If I understand correctly, you have a 3D vector field defined by:
{-u v + (u^2 *0.5)/(1 + u^2) - 1/120 u Log[2], 
  (u^2 *0.5)/(1 + u^2) - 1/120 w Log[2], 
   (2*2*0.5)/(1 + w^2) - 1/30 v Log[2]}
 In that case you would plot a vector field of this with the commad:
vectors= VectorPlot3D[{-u v + (u^2*0.5)/(1 + u^2) - 
   1/120 u Log[2], (u^2*0.5)/(1 + u^2) - 
   1/120 w Log[2], (2*2*0.5)/(1 + w^2) - 1/30 v Log[2]}, {u, 0, 
  10}, {w, 0, 100}, {v, 0, 2}, VectorScale -> 0.003]
You can combine this with your surface plot:
surface = 
 ContourPlot3D[{0 == (2*2*0.5)/(1 + w^2) - 1/30 v Log[2], 
   0 == (u^2*0.5)/(1 + u^2) - 1/120 w Log[2]}, {u, 0, 30}, {w, 0, 
   100}, {v, 0, 2}, AxesLabel -> Automatic, 
  ContourStyle -> {Lighter@Cyan, Lighter@Red}];
Show[surface, vectors]