# Three ParametricPlot3D in one plot

Posted 9 years ago
2518 Views
|
5 Replies
|
4 Total Likes
|
 Hello, how can i do this in the title? i want to see where the three plots are crossing each other.
5 Replies
Sort By:
Posted 9 years ago
 Thank you very much. I will test it in a little bit.
Posted 9 years ago
 Yes, i know. I have to change the parameters in order to find 3 fixed points.
Posted 9 years ago
 There is no guarantee that the three curves will intersect, but you may be able to compute parameters that make them intersect.In any case, here is an example with curves. \[Alpha] = 1; m = 2; \[Lambda] = 0.2; \[Mu] = Log[2]/120; p1 = ParametricPlot3D[{(\[Lambda]/\[Mu]*u^m)/(1 + u^m),     u, (\[Lambda]/\[Alpha]*u^(m - 1)/(1 + u^m) - \[Mu]/\[Alpha])}, {u,     1, 10}, PlotRange -> {{0, 100}, {1, 10}, {0, .5}}, BoxRatios -> 1,    PlotStyle -> {Blue, Thickness[0.01]}]  p2 = ParametricPlot3D[{(\[Lambda]/\[Mu]*u^m)/(1 + u^m),     1, (\[Lambda]/\[Alpha]*u^(m - 1)/(1 + u^m) - \[Mu]/\[Alpha])}, {u,     1, 10}, BoxRatios -> 1, PlotStyle -> {Red, Thickness[0.01]},   BoxRatios -> 1]p3 = ParametricPlot3D[{(\[Lambda]/\[Mu]*u^m)/(1 + u),    1, (\[Lambda]/\[Alpha]*u^(m - 1)/(1 + u^m) - \[Mu]/\[Alpha])}, {u,    1, 10}, BoxRatios -> 1, PlotStyle -> {Green, Thickness[0.01]},   BoxRatios -> 1]Show[p1, p2, p3]
Posted 9 years ago
 i have sth like this ?=1, m=2, ?=0.2, ?= Log[2]/120ParametricPlot3D[{(?/?*u^m)/(1 + u^m),   u, (?/?*u^(m - 1)/(1 + u^m) - ?/?)}, {u,   1, 10}, PlotRange -> {{0, 100}, {1, 10}, {0, 5}}]and i will have two more. How can i do it.i dont have surfaces. It is only the crossing points between two surfaces.
Posted 9 years ago
 Here is an example:surface1[u_, v_] := {Sin[u] Cos[v + u], Cos[v] Sin[u], Cos[u - v]}surface2[u_, v_] := {Sin[u] Cos[v ], Cos[v] + Sin[u], Cos[u - v]}surface3[u_, v_] := Pi/3 {Sin[u] Cos[v ], Cos[u] Cos[v], Sin[v]}ParametricPlot3D[{surface1[u, v], surface2[u, v], surface3[u, v]}, {u,   0 , 2 Pi}, {v, 0, 2 Pi}, BaseStyle -> Opacity[0.5], PlotStyle -> {Red, Blue, Green}, Mesh -> None]