0
|
5901 Views
|
|
1 Total Likes
View groups...
Share
GROUPS:

# Point-by-Point Multiplication

Posted 11 years ago
 I've written a simple loop statement for the Euler equation that goes from zero to four:k = 1;A = 5;n = 5;Do[F = I*2*Pi*k*i/(A); Print[Exp[-F] // N], {i, 0, n - 1}]The output is this: 1.  0.309017 -0.951057 I  -0.809017-0.587785 I  -0.809017+0.587785 I  0.309017 +0.951057 II also have a Fourier:In[35]:= Fourier[{1, 8, 5, 0, 2}, FourierParameters -> {1, 1}]Out[35]= {16. + 0. I,0.045085 + 8.64527 I, -5.54508 - 1.22857 I, -5.54508 + 1.22857 I,0.045085 - 8.64527 I}How can I write the Fourier inside the loop statement so that Mathematica does point-by-point multiplication?In essence, I want this to happen inside the loop:(16. + 0. I) (1.)(0.30901699437494745 - 0.9510565162951535 I) (0.045084971874738144 + 8.645265359233287 I)(-5.5450849718747355 - 1.228571067720928 I) (-0.8090169943749473 - 0.5877852522924732 I)(-5.5450849718747355 + 1.228571067720928 I) (-0.8090169943749473 + 0.5877852522924732 I)(0.30901699437494745 + 0.9510565162951535 I) (0.045084971874738144 - 8.645265359233287 I)I want the loop to print this as the answer:16. + 0. I8.23607 + 2.62866 I3.7639320225002093 + 4.253254041760198 I3.76393 - 4.25325 I8.23607 - 2.62866 IThank you in advance.
Sort By:
Posted 11 years ago
 k = 1; A = 5; n = 5; v = Fourier[{1, 8, 5, 0, 2}, FourierParameters -> {1, 1}]; Do[F = I*2*Pi*k*i/(A); Print[Exp[-F]*v[[i + 1]] // N], {i, 0, n - 1}]  16. +0. I 8.23607 +2.62866 I 3.76393 +4.25325 I3.76393 -4.25325 I8.23607 -2.62866 I
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.