# How to convert the Euler formula in trigonometric form

Posted 9 years ago
11393 Views
|
4 Replies
|
1 Total Likes
|
 I want to convert the following euler formula in trigonometric formthere is a command called ComplexExpand But it will produce the undesired results(1)the instructions below the picture will differentiate the equation and then expand itit will produce the undesired result f2 = D[f1[t],t] // ComplexExpand(2) Desired  result r3'[t]*( Cos[q3[t]] + I Sin[q3[t]] )-r1(q1)'[t]*( Cos[q1[t]] + I Sin[q1[t]] )+r2(q2)'[t]*( Cos[q2[t]] + I Sin[q2[t]] )+r3[t](q3)'[t]*( Cos[q3[t]] + I Sin[q3[t]] )
4 Replies
Sort By:
Posted 9 years ago
 If i change the format of the equation It will output the result  I wantI don't know why it would produce the different resultsf[t_] = r2 E^(I q2[t]) + r3[t] E^(I q3[t]) - r1 E^(I q1[t]) f2 =  f'[t] // ComplexExpand
Posted 9 years ago
 Hi, Also, try ExpToTrig[] f1 = D[r2 Expand[I q2[t]] + r3 Exp[I q3[t]] - r1 Exp[I q1[t]], t];f1 // ExpToTrig f1  // ExpToTrig  // TrigReduce (* also useful *)I.M.
Posted 9 years ago
 Hello and welcome to the Wolfram Community! Please take a few minutes to read this tutorial about correct posting  especially of Mathematica code:How to type up a post: editor tutorial & general tipsIf you will not follow the tutorial, other members of community may not be able to test your code. To edit your post  click Edit in the lower right corner of your post.
Posted 9 years ago
 Try using ComplexExpand on the expression.