Your code has some syntax problems. This makes sense:
\[Epsilon]0 = 8.85*10^-12; \[Epsilon]g =
42*\[Epsilon]0; \[Xi] = 0.1; R1 = 50*10^-9;
\[Rho]ag = 10.49*10^3; cd = 0.5 10^-8;
\[Epsilon]rel = ((\[Epsilon]g - \[Epsilon]0)/(\[Epsilon]g + \
\[Epsilon]0));
x1 = 500 10^-9; z1 = 5 10^-9; z1s = -5 10^-9; zs =
5 10^-9; x2 = -500 10^-9; z2 = 5 10^-9; z2s = -5 10^-9;
U[xs_] := (1/(Sqrt[(xs - x1)^2 + (zs - z1)^2])^3 - (3*(xs -
x1)^2)/(Sqrt[(xs - x1)^2 + (zs - z1)^2])^5 +
1/(Sqrt[(xs - x2)^2 + (zs - z2)^2])^3 - (3*(xs -
x2)^2)/(Sqrt[(xs - x2)^2 + (zs -
z2)^2])^5) - \[Epsilon]rel*(1/(Sqrt[(xs - x1)^2 + (zs -
z1s)^2])^3 - (3*(xs -
x1)^2)/(Sqrt[(xs - x1)^2 + (zs - z1s)^2])^5 +
1/(Sqrt[(xs - x2)^2 + (zs - z2s)^2])^3 - (3*(xs -
x2)^2)/(Sqrt[(xs - x2)^2 + (zs - z2s)^2])^5 +
1/(Sqrt[(zs - zss)^2])^3);
Felectrical = -U'[xs[t]];
Fsurfaceviscosity = -cd*xs'[t];
ma = 4/3*\[Pi]*\[Xi]*(R1)^3*\[Rho]ag*xs''[t];
Ftotal = Felectrical + Fsurfaceviscosity - ma;
NDSolve[{Ftotal == 0, xs[0] == 100 10^-9,
xs[2700] == 300 10^-9}, xs, {t, 0, 3031}]
but it may not be what you meant. However, it does not compute, because of numerical problems.