Your system has more equations than unknowns. Solve
only gives generic solutions. You may try Reduce
, but it is probably too complicated. Here I replace the coefficients with random numbers and check if there are solutions:
eqs = {uj == aj*c1 + bj*c2 + cj*c3 + ui,
vj == aj*c4 + bj*c5 + cj*c6 + vi, tj == aj*c7 + bj*c8 + cj*c9 + ti,
uk == ak*c1 + bk*c2 + ck*c3 + ui,
vk == ak*c4 + bk*c5 + ck*c6 + vi, tk == ak*c7 + bk*c8 + ck*c9 + ti,
ul == al*c1 + bl*c2 + cl*c3 + ui,
vl == al*c4 + bl*c5 + cl*c6 + vi, tl == al*c7 + bl*c8 + cl*c9 + ti,
um == am*c1 + bm*c2 + cm*c3 + ui,
vm == am*c4 + bm*c5 + cm*c6 + vi, tm == am*c7 + bm*c8 + cm*c9 + ti,
un == an*c1 + bn*c2 + cn*c3 + ui,
vn == an*c4 + bn*c5 + cn*c6 + vi, tn == an*c7 + bn*c8 + cn*c9 + ti,
uo == ao*c1 + bo*c2 + co*c3 + ui,
vo == ao*c4 + bo*c5 + co*c6 + vi, to == ao*c7 + bo*c8 + co*c9 + ti,
up == ap*c1 + bp*c2 + cp*c3 + ui,
vp == ap*c4 + bp*c5 + cp*c6 + vi, tp == ap*c7 + bp*c8 + cp*c9 + ti};
vars = {c1, c2, c3, c4, c5, c6, c7, c8, c9};
coeffs = Complement[Cases[eqs, _Symbol, All], vars];
values = RandomInteger[{1, 2}, Length[coeffs]]
eqs /. Thread[coeffs -> values]
Reduce[%]