And here is a 2D-example. It runs (at least on my machine) quite long
dd = .1;
cc = 1;
ee = 25.;
f1 = f[x, y, t];
sol = NDSolve[
{
D[f1, t] ==
dd ( D[f1, x, x] + D[f1, y, y]) - cc Exp[-ee (x^2 + y^2)],
D[f1, x] == 0 /. x -> -1,
D[f1, x] == 0 /. x -> 1,
D[f1, y] == 0 /. y -> -1,
D[f1, y] == 0 /. y -> 1,
f[x, y, 0] == 1
},
f,
{x, -1, 1}, {y, -1, 1},
{t, 0, 15}][[1, 1]];
ff = f /. sol;
Manipulate[
Plot3D[ff[x, y, t], {x, -1, 1}, {y, -1, 1}, PlotRange -> {0, 1.1},
PlotStyle -> Opacity[.5]], {t, 0, 15}]