Here I get different integrals
Vscc = 1.5; f = 0.6;
\[Tau]1 = Vscc; \[Tau]2 = f Vscc; \[Tau]3m = f Vscc; m = 10;
PAI = 0.04819277; \[Lambda] = 0.03150354; PSA = 0.025; ni =
IntegerPart[(m - \[Tau]1 - \[Tau]2)/\[Tau]3m] + 2;
vti = Flatten[
Append[Append[{0, \[Tau]1, \[Tau]1 + \[Tau]2},
Table[\[Tau]1 + \[Tau]2 + (i - 2) \[Tau]3m, {i, 3, ni}]], m]];
F[t_] = 1 - Exp[-\[Lambda] t];
vf = {F[t] + PAI};
Do[vf = Append[vf,
F[t - vti[[i]]] + PSA (vf[[i - 1]] /. t -> vti[[i]])], {i, 2,
ni + 1}];
pwPA = Piecewise[
Partition[
Riffle[vf,
Table[vti[[i]] \[LessSlantEqual] t < vti[[i + 1]], {i, 1,
ni + 1}]], 2]];
pwtemp1 =
Piecewise[{{pwPA /. t -> (t - Vscc),
Vscc \[LessSlantEqual] t < 2 Vscc}, {pwPA /. t -> (t - f Vscc),
2 Vscc \[LessSlantEqual] t < m}}];
FC1[t_] := Count[vti, x_ /; (t - Vscc) \[LessSlantEqual] x < t];
FC2[t_] := Count[vti, x_ /; (t - f Vscc) \[LessSlantEqual] x < t];
pwtemp2[t_] :=
Piecewise[{{PSA^FC1[t],
Vscc \[LessSlantEqual] t < 2 Vscc}, {PSA^FC2[t],
2 Vscc \[LessSlantEqual] t < m}}];
pwPAMV[ut_] := (pwtemp1 /. t -> ut) pwtemp2[ut];
pl1 = Plot[(pwtemp1 /. t -> tt), {tt, 0, m}, PlotRange -> Full, Filling -> Axis]
NIntegrate[pwtemp1, {t, 0, m}]
pl2 = Plot[pwPAMV[tt], {tt, 0, m}, PlotRange -> Full, Filling -> Axis]
NIntegrate[pwPAMV[tt], {tt, 0, m}]/m