Hello Rohit,
thank you very much. I know how GraphicsComplex works. What I meant was
plt = ContourPlot[x^2 + y^2, {x, -2, 2}, {y, -2, 2}, Contours -> {1}]
points = Cases[plt, GraphicsComplex[pts___] :> pts, Infinity];
lineIndexes = plt // Cases[#, Line[idx___] :> idx, Infinity] &;
nps = Flatten[lineIndexes[[#]] & /@ Range@Length@lineIndexes];
ListLinePlot[Flatten[Flatten[points, {2}][[#]] & /@ nps, {2}], AspectRatio -> Automatic]
and then (there is for sure a more elegant method to access the polygons, the numbers are embedded in plt)
ppp = Polygon[#] & /@
Map[plt[[1, 1]][[#]] &, {{742, 561, 410, 644}, {738, 547, 415,
650}, {693, 470, 428, 692}, {681, 473, 489, 696}, {736, 541, 80,
614}, {737, 544, 117, 616}, {735, 538, 66, 611}, {695, 489,
487, 670}, {706, 423, 409, 622}, {659, 156, 589, 749}, {646,
411, 541, 736}, {750, 593, 418, 666}, {686, 431, 411,
685}, {717, 409, 459, 718}, {701, 434, 412, 700}, {704, 460,
414, 703}, {748, 587, 436, 654}, {687, 437, 416, 629}, {749,
589, 439, 660}, {747, 586, 413, 624}, {723, 523, 86, 613}, {721,
520, 70, 610}, {743, 565, 146, 656}, {612, 70, 470, 680}, {676,
446, 443, 661}, {705, 421, 408, 621}, {689, 459, 424,
640}, {713, 448, 419, 634}, {651, 436, 460, 691}, {744, 569,
160, 662}, {746, 577, 156, 673}, {615, 86, 473, 681}, {635, 420,
448, 688}, {631, 418, 446, 711}, {745, 575, 140, 671}, {649,
413, 544, 737}, {626, 414, 434, 708}, {628, 415, 437,
709}, {617, 146, 550, 739}, {672, 439, 575, 745}, {663, 417,
569, 744}, {674, 443, 577, 746}, {653, 140, 587, 748}, {716,
433, 586, 747}, {642, 410, 538, 735}, {616, 117, 547,
738}, {618, 160, 553, 740}, {637, 66, 559, 741}, {643, 80, 561,
742}, {657, 416, 565, 743}, {667, 419, 173, 665}, {682, 407,
421, 683}, {714, 408, 423, 715}, {647, 432, 433, 690}, {694,
487, 432, 647}, {623, 412, 431, 707}, {741, 559, 407,
638}, {641, 531, 520, 720}, {740, 553, 420, 664}, {739, 550,
417, 658}, {731, 428, 523, 732}, {640, 424, 531, 730}, {665,
173, 593, 750}}, {2}] // Graphics
Greetings, Hans