Message Boards Message Boards

Error in NDSolve of transmission line?

Posted 3 years ago

ClearAll["Global '*"]; NN = 11;

tmax = 6.0;

fN = 1.0;
Rs = 50.0;
Resc_impair = Table[Rc[k] = 0.0, {k, 1, NN, 2}];
Resc_pair = Table[Rc[k] = 0.0, {k, 2, NN, 2}];
Rc[NN] = 1100.0;
Resl_impair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Resl_pair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Rl[NN] = 200.0;
t0 = 0.0; ts = 1.7 + t0; tflat = 300.0; tfall = 1.7; tc = ts + tflat;
td = tc + tfall; a0 = -10.0*10^3; {ts, tflat, tfall, td - tc}
Vs[t_] := Which[t <= t0, 0, t > t0  && t <= ts, a0 *(t - t0)/ts - t0,
  t > ts && t <= tc, a0, t > t0 && t <= td, a0*((-t + td)/(td - tc)), 
  t > td, 0]
TabVs = Table[{t, Vs[t]/1000}, {t, 0, tmax, 0.01}];
VoltVs = ListPlot[TabVs, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]

np = 256; tfourier = 1000;
pulse = Table[Vs[t]/1000, {t, 0, tfourier, 0.05}];
datafin = Table[{f/(1.2), Abs[Fourier[pulse]][[f]]}, {f, 1, 60, 1}];
pVs = ListPlot[datafin, PlotRange -> {{0, 50}, All}, 
  PlotStyle -> {AbsoluteThickness[1.8], RGBColor[0, 1, 0], 
    Thickness[0.008]}, FrameLabel -> {"Frequence(Mhz)", "Voltage(V)"},
   Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
NIntegrate[Vs[t]/1000, {t, 0, 200}]
(*non linear capacitor*)
m = 1.08; V0 = 0.7; Cs0 = 0.000095;
p = (1.0 + 1*V[k][t]/V0)^m
Cv[k_][t_] := which[V[k][t] > -V0, Cs0/p, V[k][t] <= -V0, 10.0]
Cv[k_][t_] := Cs0/p
Ca[Va_] := Cs0/(1.0 + 1*Va/V0)^m 
Cv[NN][t] := 10000000.0;
Plot[{Ca[Va]}, {Va, 0, 15}, AxesLabel -> {"Va", "Ca"}, 
 PlotRange -> {0, Cs0}, PlotStyle -> {Thickness[.01], Red}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
(*non linear inductance*)
L0 = 465; La = 4.65; Is = 3.76;
Ls[k_][t_] := (L0 - La)*(Sech[i[k][t]/Is]^2) + La
La1[Ia_] := (L0 - La)*(Sech[(Ia/Is)]^2) + La
Plot[{La1[Ia]}, {Ia, 0, 100}, AxesLabel -> {"Ia", "La1"}, 
 PlotRange -> {0, L0*1.2}, PlotStyle -> {Thickness[.01], Orange}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
Ls[NN][t] := 1.0*10^-8
Ls[k_][t_] := 280.0
(*Equation for the First Section*)
eqi = Table[{-i[k]'[t] + 
      Vs[t]/Ls[k][t] - (Rs/Ls[k][t])*
       i[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 1, 1}];

(*Equation for the intermediate Section*)
eqs = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t]) *(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 2, 
    NN - 1}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
(*Equation for the finale Section*)
eqf = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t] )*(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] ) - (V[k][t])/
       Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t])/Cv[k][t] == 0}, {k, NN, NN}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
initial1 = Flatten[Table[{i[k][0] == 0., V[k][0] == 0.}, {k, 1, NN}]];
Vlist = Flatten[Table[{V[k][t], i[k][t]}, {k, 1, NN}]];
sol = NDSolve[Join[eqfinal, initial1], Vlist, {t, 0., tmax}, 
   MaxSteps -> Infinity];
sol1 = Flatten[sol];
inputiv = 
  Table[{i[k][t] = i[k][t] /. sol1, V[k][t] = V[k][t] /. sol1}, {k, 1,
     NN}];
outiv = Flatten[inputiv];
V[0][t_] := Vs[t] - Rs*i[1][t];
Vfp = Table[
   V[k][t_] = Rc[k]*(i[k][t] - i[k + 1][t]) + V[k][t], {k, 1, NN - 1}];
V[NN][t_] := Rc[NN]*(i[NN][t]) + V[NN][t]
Pload[t_] := V[NN][t] i[NN][t]
Pint[t_] := Vs[t] i[1][t]
VoltFim = 
 ListPlot[outiv, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
Show[VoltVs, VoltFim]
Error:NDSolve::nlnum: The function value {-0.00174035,-1. (1.68378*10^-10-1.66057*10^-17 Rl[2]),0.,0.,0.,0.,0.,0.,0.,0.,<<12>>} is not a list of numbers with dimensions {22} at {t,i[1][t],i[2][t],i[3][t],i[4][t],i[5][t],i[6][t],i[7][t],i[8][t],i[9][t],<<17>>} = {0.0000828415,-1.0813*10^-7,-4.64959*10^-15,0.,0.,0.,0.,0.,0.,0.,<<17>>}.
7 Replies

Hi,

Ah - try this modification:

VoltFim = Plot[outiv, {t, 0, 6},

and eliminate from that expression the option `Joined -> True, then in your final

Show[...]

add the option PlotRange->All

You are plotting both the voltages and currents, even though your y-axis label indicates volts (!) Resulting Show[] plot

`

POSTED BY: Frank Iannarilli

Thanks, Frank.....

In[1]:= ClearAll["Global '*"];
NN = 11;

tmax = 6.0;

fN = 1.0;
Rs = 50.0;
Rescimpair = Table[Rc[k] = 0.0, {k, 1, NN, 2}];
Rescpair = Table[Rc[k] = 0.0, {k, 2, NN, 2}];
Rc[NN] = 1100.0;
Reslimpair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Reslpair = Table[Rl[k] = 0.0, {k, 2, NN, 2}];
Rl[NN] = 200.0;
t0 = 0.0; ts = 1.7 + t0; tflat = 300.0; tfall = 1.7; tc = ts + tflat;
td = tc + tfall; a0 = -10.0*10^3; {ts, tflat, tfall, td - tc}
Vs[t_] := Which[t <= t0, 0, t > t0  && t <= ts, a0 *(t - t0)/ts - t0,
  t > ts && t <= tc, a0, t > t0 && t <= td, a0*((-t + td)/(td - tc)), 
  t > td, 0]
TabVs = Table[{t, Vs[t]/1000}, {t, 0, tmax, 0.01}];
VoltVs = ListPlot[TabVs, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]

np = 256; tfourier = 1000;
pulse = Table[Vs[t]/1000, {t, 0, tfourier, 0.05}];
datafin = Table[{f/(1.2), Abs[Fourier[pulse]][[f]]}, {f, 1, 60, 1}];
pVs = ListPlot[datafin, PlotRange -> {{0, 50}, All}, 
  PlotStyle -> {AbsoluteThickness[1.8], RGBColor[0, 1, 0], 
    Thickness[0.008]}, FrameLabel -> {"Frequence(Mhz)", "Voltage(V)"},
   Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
NIntegrate[Vs[t]/1000, {t, 0, 200}]
(*non linear capacitor*)
m = 1.08; V0 = 0.7; Cs0 = 0.000095;
p = (1.0 + 1*V[k][t]/V0)^m
Cv[k_][t_] := which[V[k][t] > -V0, Cs0/p, V[k][t] <= -V0, 10.0]
Cv[k_][t_] := Cs0/p
Ca[Va_] := Cs0/(1.0 + 1*Va/V0)^m 
Cv[NN][t] := 10000000.0;
Plot[{Ca[Va]}, {Va, 0, 15}, AxesLabel -> {"Va", "Ca"}, 
 PlotRange -> {0, Cs0}, PlotStyle -> {Thickness[.01], Red}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
(*non linear inductance*)
L0 = 465; La = 4.65; Is = 3.76;
Ls[k_][t_] := (L0 - La)*(Sech[i[k][t]/Is]^2) + La
La1[Ia_] := (L0 - La)*(Sech[(Ia/Is)]^2) + La
Plot[{La1[Ia]}, {Ia, 0, 100}, AxesLabel -> {"Ia", "La1"}, 
 PlotRange -> {0, L0*1.2}, PlotStyle -> {Thickness[.01], Orange}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
Ls[NN][t] := 1.0*10^-8
Ls[k_][t_] := 280.0
(*Equation for the First Section*)
eqi = Table[{-i[k]'[t] + 
      Vs[t]/Ls[k][t] - (Rs/Ls[k][t])*
       i[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 1, 1}];

(*Equation for the intermediate Section*)
eqs = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t]) *(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 2, 
    NN - 1}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
(*Equation for the finale Section*)
eqf = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t] )*(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] ) - (V[k][t])/
       Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t])/Cv[k][t] == 0}, {k, NN, NN}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
initial1 = Flatten[Table[{i[k][0] == 0., V[k][0] == 0.}, {k, 1, NN}]];
Vlist = Flatten[Table[{V[k][t], i[k][t]}, {k, 1, NN}]];
sol = NDSolve[Join[eqfinal, initial1], Vlist, {t, 0., tmax}, 
   MaxSteps -> Infinity];
sol1 = Flatten[sol];
inputiv = 
  Table[{i[k][t] = i[k][t] //. sol1, V[k][t] = V[k][t] //. sol1}, {k, 
    1, NN}, {t, 0., tmax}];
outiv = Flatten[inputiv];
V[0][t_] := Vs[t] - Rs*i[1][t];
Vfp = Table[
   V[k][t_] = Rc[k]*(i[k][t] - i[k + 1][t]) + V[k][t], {k, 1, 
    NN - 1}, {t, 0., tmax}];
V[NN][t_] := Rc[NN]*(i[NN][t]) + V[NN][t]
Pload[t_] := V[NN][t] i[NN][t]
Pint[t_] := Vs[t] i[1][t]
VoltFim = 
 ListPlot[outiv, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 1, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
Show[VoltVs, VoltFim]

Out[13]= {1.7, 300., 1.7, 1.7}

Out[16]= \!\(\*
GraphicsBox[{{}, {{}, {}, 
{RGBColor[0, 0, 1], PointSize[0.007333333333333334], Thickness[0.008],
       LineBox[CompressedData["
1:eJxd10uMXXUBx/Hpu50+5v1oO525M+MCF7hxKxx3mqgL2IldmYhRF+JOYCvB
HS6Mr4UbQOOmiQlGTAz3aMFXgAAFBivUmelr2k7bed15FRh7zveX841zFpx8
Kb33nN/nPwUmv/n9R7+1t6ur6+v3/1Ldd19PD5770txTPyrG6+tcm/5p+pX2
y+PP3Hrk5V8XP/9Zdf0tv/5Cfv3N9q9+WV2/Ky68U1/558/ln3+/vfhI9Xd+
X3zjseq6mN//Un7/pXb3zPNPPNT9x2J5qbpm83l/yufNtz979rm/dh74c/GH
l6rrSj7/lXz+tfYL93/3zPNl8eQPq2sh3/eXfN/N9ufr63zx0BeqazHf/2q+
/077fOeB+9/wWsEaS3mev+d5ltqP1l/4j2J+rrqW83z/zPOttOeeqj7wX8Wr
56trNc/7ep53rf2D6vGeeKP47YvV1cnzv5nnX2/zvW8VP362ujbyPm/lfTbb
X66/4O3ie9+prq2839t5v+129W1nn3un+OpXqute3vdC3vfjdv06MxeKzz1Y
XZ/k/d/N+3/anqgeZ/y9orenunayx3vZo6v89uPV9X6ep6tkn5ns01VWnzZ4
bqb4bv18e0r2+iB77SnXq4/rfJDn3Vuy37+z397y4foDL+b595XseTF77ivr
x3vmP3mf/SX7fph995dvvF5dHxb16z14oGTvj7L3gXKofsBLxUT9vgdL9r+U
/Q+W9ced/W9Rv37PoZLXno3HobzPbPY4XOIzmz0O5/1ms8fhEq+5eB3J+85l
jyMlfnPZozvvP1+8W+/RXeI5nz2OZo/57HG0xPdy9jiWfS5nj2MlPJfjfTx7
XSl+U+9xvMT/SvxPZL8rxS/qPU6UnIerOQ892fNq9ugpOR9Xs0dv9r2W5+nN
ebmWfXqz97U8X2/Oz/Xs1Zv9r8evL+fpes5TXzwW8vx98VjInn3xWMj79Mdj
Ifv2x+NGvPvjcSPnrz8eN+I/EI+b2X+g/EntcTPvPxCPm/EYiMet7DEYj1vZ
YzAet7LHYDwWs8dgPBaLlXqPwXgsZo+heNzOHkPxuJ3zPRSP29ljKB53ct6H
43GnqOd4bDged7LHcDzuZo/heNzNHiPxuJs9RuKxlD1G8j5L2WMkPkvZYzTv
t1Q8XO8xGq+l7DGa913KHqPxW8r5GM37L+c8n4zncn6+TmaP5ZyPk/Fdzh4n
s89y0ar3OBXv5ZyPU9lrJef/VPxX8vN4KvutFH31Hqfz87mSPU5nz5WinuPZ
0zkfK9njdPZdzR5jOS+rOR9j2Xs1e4zl/Kxmj7Hsv5o9xnKeVrPHmXisZY8z
8VjLHmfisZY9zsRjLT8v4/FYyx7j8VjLHuPxWMv5GI9HJ38+TMSjU3yt3mMi
Hp2cj4l4dIrX6j0m4tHJHq14dHJeW/FYzz6teKzn+VrxWM9erXis5zy34rGe
/VrxWM/zt+KxkT1b8djIeZ+Mx0Z+/ibjsRHvyXhs5OdxMh4b8Z+Mx2b2n4zH
Zt5/Mh6b8ZiMx2b2mIrHZnym4rGZPabisZk9puKxlT2m4rGVPabisZU9puKx
lT2m4rGVP3+m4rGVPabjsZ3zNh2P7ewxHY/tnL/p/Hm5Hf/peGwX9RwvTsdj
Oz8f0/G4lz2m43Eve3wmHjYeNh42Hjb3j5vGw8bDxsPGw8bDxsPG45Om8bDx
sPGw8bDxsPH4tGk8bDxsPGw8bDxsPHaaxmNnl8fOLo+dXR47uzx2dnl0ffH/
38fGx+b9bLzs+nUft/Gz+fPBxtNmDxtfm31svG322tM0/jb72ZwHmz1tzofN
vjbnxWZvm/Njs7/NebK5720aDxsPGw8bD5vzZ+Nh42HjYeNh42HjYeNh47Gv
aTxsPGw8bDxsPGw8bDxsPGw8bDxsPGzu+5vGw8bDxsPGw8bDxsPGw8bDxsPG
w8bDxsPG40DTeNh42HjYeNh42HjYeNh42HjYeNh42NwPNo2HjYeNh42HjYeN
h42HjYeNh42HjYeNh43HoabxsPGw8bDxsPGw8bDxsPGw8bDxsPGwuR9uGg8b
DxsPGw8bDxsPm39/2njYeNh42HjYeNh4HGkaDxsPGw8bDxsPGw8bDxsPGw8b
DxsPm3t303jYeNh42HjYeNh42HjYeNh42HjYeNh42Dze0abxsPGw8bDxsPGw
8bDxsPGw8bDxsPGwuR9rGg8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPG4/jTeNh
42HjYeNh42HjYeNh42HjYeNh42FzP9E0HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42Hj1N42HjYeNh42HjYeNh42HjYeNh42HjYXPv3fU+Nj4272fjZfO+Nn42
72/jabOHzf/P2Oxj422zl81/P9jsZ3MebPa0OR82+9qcF5u9bc6Pzf4258nm
3tc0HjYeNh42HjYeNh42HjYeNh42P282HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42HjYeNvf+pvGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDx
sPGw8bDxsPGw8bDxsLkPNI2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeN
h42HjYeNh42HjYeNh42HjYeNh819sGk8bDxsPGw8bDxsPGw8bDxsPGw8bDxs
PGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGzuQ03jYeNh42HjYeNh42HjYeNh
42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42FzH24aDxsPGw8bDxsP
Gw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw+b+0jTeNh4
2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjY
3Eeb/h9mER2X
"]]}}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(kV)\"", TraditionalForm], None}, {
FormBox["\"Time(ns)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 6.}, {-10., 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {
Scaled[0.05], 
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)

Out[20]= \!\(\*
GraphicsBox[{{}, {{}, {}, 
{RGBColor[0, 1, 0], PointSize[0.011000000000000001`], Thickness[
      0.008], LineBox[CompressedData["
1:eJw1kX8s1HEYxy90yq84vhi5yZHuIj/y+3Dv4+6QbBJqJfRLuSkW0Y81FtpM
zMRObJYRjbq0aaU0WiPSrnH8IVYLKZep/EFpVHwfz/bZZ8+e1+e1957PjhOZ
caf1OBxO8P+zdre1rpVOMqpOOlncegVsvyxx2x+UrRzLBWe9DLDZvaPfvlVJ
cyO8f1GyLcZEQb05mL/i7i79A8RbYXcIX5WXn4jEhLWywfNAsTqVJyfeDnXj
LYn3+X7E84HQy3lC22iaO6KvjytuLgin904YTm/8U2GsT7wzHo5ftU/2lxLv
gvaYJvmhDCnxrvikXVUtahyJF4KpOhUR/dKHeBFsU5YsCydDiHeDdfBXnjHP
nfg9cOU6TIjeOhPvganDskumqQHUe+Ke2rChtMmL5Qu8sLxQOaNZ0SOfNxbM
f29xrfFmedFeND5t2+dT5k1+H3wsvWNt+cGU5Ud9MH9m00DvXSH5fTGYlOM4
Pbjh90NhKldrLnMkvz9EFc/mNPEO5A+AwbVurbLGg/yBSPU2e1D804X8gXCu
aM1YmNEjfxAkFjdNvo0JyS9GtNXB8tWBXeQPRktUV5SH56qE9YcgTTuo5hsL
yB+KiTBBAiMQkj8UTPkxST+PIb8EqoLM2721NiwPQJU1cb3kuCvNgUkFd8W9
j8++Z6TI6dn6nXmtR3mkEDVXd2iWBCyvk2LqS0BaltyJ8oUhO6ChM7ZjTrLO
94Sh0Oyov/8rPu0jHBq5kX29VMDy1eHIT88/d8PWlPLLMNyRlVMrtmJ5pQyG
9pWZs0XkH5WhLuVN8+N5a8ovx60qnVNy/cb+5ICwyMQ3nv6DUSA3RW3+Wbmd
8iugrc171MkdZvenU+Bs7PkhTxM7yh+B7HDV8vQsn+V7IrDzgiUz0mRA+SMx
HDe06PDLgvJHYnZideRIGfGcKLx78uNibrsF/gG0uWwb
"]]}}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(V)\"", TraditionalForm], None}, {
FormBox["\"Frequence(Mhz)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 50}, {0, 426.6575654621532}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {
Scaled[0.02], 
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]\)

Out[21]= -1991.5

Out[23]= (1. + 1.42857 V[k][t])^1.08

Out[28]= \!\(\*
GraphicsBox[{{{}, {}, 
TagBox[
{RGBColor[1, 0, 0], Thickness[0.01], Opacity[1.], 
       LineBox[CompressedData["
1:eJwVzHc81fsfwHHnHGRkz8zIyPgKZRWf9welSxmV2S0qVApJh2426WpoK+Oq
cDWVlRUN0a04J7IPsiIh4xzHyXGEX78/Xo/Xf0+NQyd2B5L5+Pge/+7//9nf
8E7rUhoSd7L85PldEdrvKp6xZYRDhEufZmC1ImC55kOKjCQ46j1ZIH5FESLd
nnRRGDfAW/+Hkq6FIkhNK9xY6MoD7qYCZZVrCjDw0uXEXFcpBMqcwh/2ykOW
nELAKYEyKCRF/ABzeXAPHfCeNS2HMypt/frS8tCoHmbHvFwJU/E1J11pclCR
dF1u0v4lWJE0yrLt5MBBa6KP1VUHyVGdDpX2spDv5uJdEloP0T56OZHaskCK
LW0NE3gHTjYGsamrZOFlR9SHGdP/4A7romIFXQZMUkRLpi5/gLLntwZ69sqA
yoRh8rg9HXQ3r5jtPicNC10Wt5hdrXB+gOJ4UlQKqkyFDjzUa4O8yvfq02xJ
iLzM0PeNboOwf/3VHn+RhFm7M7U0tXYoNctu7iiUhIln1T8eBHYAs8K3lOkh
CV/O2tjtZ3dBtxe1fHCfBGT1i4nJbmNAbsIH4c+bJMDbqr+r8TYD9J6WxWiI
SUDHdFyI5eZuoBoaWX97LQ5NPrUZMok9oBz0lteoIw61G+xnGsT7YGqN89cF
QTGIuyhTnXCgD4YLjOPCR1aD9bfhZIvSPtA/M9tnVbcaXmQlK9336AcNjYWG
4rjVUCrwfltC9gB0OcpErlsUhdYQLRdluSEwf+TLcSKJQr39w/yWvGFYP+h/
qNdaGIyvFI3PfxyGE+yrEuZawnCXUWmkNjMMri12U69FheGvkI9Vx7aMQHuR
uo1PrxAYpY/TKe0jYB659mFejBBkTRhwzARG4ZXowJzGh1UQdr14W9aRMTjW
veXH5F+C0N9bdbH28hjEZwsFmwUKwg6dt82jz8cg7tys5r1dgqBT0+KzkW8c
WNoD4+36gtA7MhtCzxgHy7h3cm/7BcDB0uz2csMEiJmcZXvvFACVgRejhwyn
4Izzq8S71vzAxz6Z0bBrCrC2Xf9nQ34YEdR3Mj49BRkRNtNKqvzwzCjr2dLb
KQg0QV6cJQqguChqhtc0HD8oW/6qlgJ+qlvITUkzsOuoW9VJJwq0EP1XsieZ
UHkwc0A/hAzvLKq/u64wQWJtRwLXjwwVtrcxRZoFHilfHRm7yZDl4TIbZMGC
YONttZ8syXAo9rWHRRILxMrcnFMFyDBLv6vSqjALNmvib1nlkUA22O/JKns2
PEuQkqB+5wP9Vf++d/NiQ2JFvop7Lx/gvNGvmcfZkJQ407+1mQ+CGSHKhmls
yBEQ5XlV8sG7rTGpbt/Y0JhbPIbP8wFVNTM0M2UOlt0iK0gEH7Q1tZoa0DlQ
Ord2dIC8gsaC5F2pgxy4QZ2U9ZxeRsv8e4+/muMAIbL28Gj3MtLfMvSvq+pP
6MuoKnAvWUZJD2dkqaE/IWH/QOKhg8vINGH1/EvJeTCh/fFR6f0SumHiUOPi
wQVp42NuzTm/0IZen+02R7lwpWrE1e/aL0RPDmkziObCw+nlcFLCLyTISPsh
lMuFdDFSYbTfLxQdN6xcP8kFkvu1xq3qv1AALSHGInkB9Fbe8knlLSLzwBqb
tc950G67wZLxnIfaxJsbxN/zQNPGmHH6Pg+FVX31WGLwIC2d562TzkNPREVC
e5Z5cL9bJq8oiofUS73vpjktwhOH44NhdjwktMJZFvq6CNMWhMQ/7QuoO8O4
liW5BOW6lxuWyQsoq61AIlJ7Ce4tpl2y43DRXnFdP57VEoSWa35K+85FX86q
LpP9l+BoXwo1gM5Fg6Ei1rLlS5AzlzX67DYXjW0dqTT3WQZn36roToKLuMz0
oujcFeijHNNnBs6jS/nxzeQ1JLxt5uJhlwUOctoUJC23joSHKBdSaNMcJPRu
t4cuQcKpI3Z7do9wUPKwdu8OWxKeswmriGnmoBhN+mhaEAnTdsfY2j/goNAc
xWWdahJOeRLmn+rBQbuySwx3/EnGJxi3xWqq55BC2vCFm3coeL+/+x2DO2yk
aFCezH1AwcW2LCenW2ykVPd3/P5iChb7bCVx4jIbqTH1InTrKXhniUBtYywb
ae8MO1AzRsFnPnmSG33ZaCP/kvnwRn5M+6Ne76sGG7lS5UdMG/lxScEj8s6n
syjF3RG1/hTAIq5nNWo+s5BSWZMSmSSI7U0W43IbWKhQxn3eRFQQi3vdcr5c
x0Kdrb7F19UFcaHdFe2IMhbS2kXV3PWHIHY9oS1/LoOF6pzvCX7OFMTb+abq
cw6y0JIDp+mT9SqslekXcG+eiU5Z5fo1JAlhx8YQ5TQTJto6w4sKHRbBO0T2
iLd3TKFE610HlSzF8P6A6AqDoh9oc2FmWdwbCRxwNy7d48k4CuayEj6KSWHJ
jqagpwJjaMFAsp/wkMZiPmdO1FBHkXXB05zbt2UwmN9/v3fNN8SSdjrgWSeL
mQ3hsxTuMBpJPeAZvkoeX0obNbHo/4ocZ047fjNXwAm2nIsc5hCa9Bc6VRav
iCfELR7xCw0hBy0FckrdGhwaHh8dZTmIpD/pXCmeUcIyhznMQvEBpHK+yM3c
XAW3DZ2dUS7sQxkGVpIyR1Txu+gbh5Tiv6BGJVsz9nU1zA7YTu0+3os2q9Rd
29Cpjh8tfiGEvHqQOCWPejBpLdat4EyKHulGaonq1j46Gjg/98iBISoDCWvv
q9j9QQM7SOtsikrvQkY2a4pO79fEMSbBdes7O1F4v3S9E986rDqREnxNqhPN
sFM9HDPWYUdDTzPzwA60fcP7LEdCC9f3/BPR8l87es3esjjfpIW5dQMvnmm2
o1BD056WQG3c6yPhMnOjDdlMB7T7COtgNVKbQ/pKK9qmpegslqeDN2byG+2N
bUXrEy7+VWehi/Hp7+5C/K1IP9DqjXaPLs5OcC8TTmlBga+PJpedXI9XZ05c
01BsQW9y2gNYcno43zD4W939z2ju0cr8hko9HDQdbje7+TPy1y4QznLWx4lZ
noIVlc2IpX/TvJSpj2Xu2Vx9O9uEqvIXhzjnDXDgN5t8in0T2rt1Hd6iZogl
LEykBu58QsohKS+Mag2xlsZ2SbNZOpITCS5x9iIw1+7CmvvedJRvHxvF9CHw
xdh9ngKedGQae8X+5j4Cxz8eFzm8h45cmMUdjIMErkx53rPehY7+7uQs+AcT
2O7+Takyezri5sXbRSUSWCZD+e2gER31bLnZ9qCAwFc3mrncEKCjoxH52Y6F
BL5ZO7qNRKGjn4XlgZPFBH4TSy0J46MjaU3GvEkFgY2yCobdFmloh5Cqyqta
ArurW5fIs2joZfuDgLYOAuddeNBZ+YWGnMSriEgGgfmL+JeJHhpibG/4qdhL
4KUlv/T8Lhqaq/5x3neQwPWv09VvttIQkWv8bHyCwKuutiRFfPzt9dhGpk4R
WDS233zmv9+e7B7YwCRw8NivP4PqaehwSkQLlUPgX2sXuL6vf3u1f2cpcAks
H5Md1lNDQ0m8dP9qHoEDwr54e76gIclNjw33LxF4qO+fktYKGrobUs1ZWSFw
YuGrKNcyGvofyyb+oA==
"]]},
Annotation[#, "Charting`Private`Tag$7397#1"]& ]}, {}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{
FormBox["\"Va\"", TraditionalForm], 
FormBox["\"Ca\"", TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->{{
Thickness[Large], 
GrayLevel[0]}, {
Thickness[Large], 
GrayLevel[0]}},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"DefaultBoundaryStyle" -> Automatic, 
     "DefaultGraphicsInteraction" -> {
      "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
       "Effects" -> {
        "Highlight" -> {"ratio" -> 2}, 
         "HighlightPoint" -> {"ratio" -> 2}, 
         "Droplines" -> {
          "freeformCursorMode" -> True, 
           "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
     "DefaultMeshStyle" -> AbsolutePointSize[6], 
     "ScalingFunctions" -> None, 
     "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 14.999999693877552`}, {0, 0.000095}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic},
TicksStyle->Directive["Black", 14]]\)

Out[32]= \!\(\*
GraphicsBox[{{{}, {}, 
TagBox[
{RGBColor[1, 0.5, 0], Thickness[0.01], Opacity[1.], 
       LineBox[CompressedData["
1:eJxF13c4V+8bB3AkKZI+HysheyV7r88bHyMiJULJyCxKimS0y0gLFbIrRTIK
GUUIUSGJlNUgSYmMyPid0/d7/b7/nHO9rnOf69zneZ5z7vsRcdu/1YOJgYHB
mjiQZ9GL8zdShar1C6YWFxdXheMhq8w6P+80mpS8VeRJwtXBeTelvfNp69b0
aK/gCEec+uedKy88pMk9/2F+jS0c9YoHvFi8q2jtZ/pXyrKGI4x7sXQxvZb2
fhnlT82ScFyNNdafO99AC1hZe9dtIQz5q2Jqf4c8p9lTvrxb/jsMz2LazCa9
WmjMvqPuZT/D8PM0+5fgnFe0HR3nTAOGwhBemy8znf6atiHWNUOtLwwrmGx8
A6+9oQVrlRUyvwnDVUzl/TrfScs5IPa2vzEMYscSxw6c7qJdusMV//xxGAoe
66r+DHlPa2YPPl1fEIZG7VNlI159NPs/jXwTcWG4q0s9qpbfT/v9MT5O9nQY
xt67px3K+UDTawwaDT4YhqP8rB/H0z/RzofHa3luDsPTMoclysmfaYdubh5Y
rkvk43BX/MC1AdoB6bZvzVJhuHbNymv0/Bfavphr2Q1zoehVT4+UjxqifS4S
+8kwGArxjrFsv9NfaT010XmezaEo4Loy8i3kG01J4FZJbXIomi6/PzDkNUoT
d7+WLagYisiEq41xSj9pDxIiK6jUUMh50xxV8n/S6p7M3bKeDEHAssuhATlj
tGD38Mv3HoZgwVi18mf6L5qvB7V9p2oI+GpDjL6fn6ZlZYgqMaw+gopYsfYY
tt80I+18UeXhYOxye+EuF/WbVvVUTG24Jhg3GYXO7j09Q0sZeLB/PiAYSqh+
9jXkDy3JjVdfovkwzB8vsxr0WqRNVv8YWHsoCEqLbpM8PxdpF5wUaz8YBSFG
2LlZTJcB4JBj8aQG4ZBbeeC2pwxI3BF35XFhIOiD/k+L2xlxYv9UpuLIIXz8
3uMaPLkE06YxefI7D0J4/mHyvDor1CPXzjTR/cGV6vGTO5QVS+c6NmZz+YOV
RqXLV7FCPoPt1onG/Rg9vu/bLtPlMM7YGWjOth+VzBLaT7avwMW1q5qYr/jB
iT2282QwO6TANX786R68XKm+nNmJExlVDDnlWR5os6AkNIdxovvAFLuEiwfe
Rv2QTEzmhOepmTQtfg98XnqbLt/NifmJjKdul9wxN8973H7HapzqtxSuOL0b
sj9mpnIdKKjl3bPu2HlXKMp1nDl8hIJ9h2OexG9xhfqe+1yGiRQ87fNisOFx
heHgHuXOtxR4aIkLNGS4wKH3vR+jPRUG+zvcpo87I7L58WdbOy7w+v0yaNbc
iQvsSQeFg7jAxB27e9ebHYg3D2L6doULHLxfwyQO7kBavbzw8TdcSBwyXWl9
3xEllWk7crZxw43a8eCtvgMG8k60LWzlwdK4/Un3LthheMTJtTGAB1s5RxSu
69nhp6z2z7hYHvwpHZtP/G6LuazxlTJtPDCavsdXbW0LrrTdG2228KK8IzbW
T2wbDC8aP7m9mQ83Te67zU9vwXHzouy2fXzITPqiu6p0CyqXisXNn+dDczCP
MMORLdAOY/C0ecGHEQtju8B5a6j4VLAtmq3Bxvps7T2c1hA3UtpuZ8gPW9XS
jo7STXBbSMMJV36YXpRtTN+6CellHLK5x/nRtOJ0ds93CwgojswxVvHj27yF
Waq0BbgFb2fe01mLu6cNDaryNoJlWuAHs5oAWJ69sHk8YwL6/XOdCtsEsES4
2uXeHROc9Jt94nhQACOZff4v7E2w8KkzrqBQAMUHmjoiHhljujVWa6e8IDTW
Re6NuEyHegyjWISlIGojJZec2kjHIVN/9vu+gki+tZztIhMdPx9b9i27K4jO
DK+OxsNGGMphPfNASgj1s7ucPPcZQtLz8L5eEyFYOEirn5A3hLvI4PblnkJQ
9qnddGnUAP3XamWdbwrhx63J5vBDBug6fbR1hcg6xAhZBGtHAR4KsyuVVgpD
qFdzyXSJHja9j7jFJySMpKeTfubmelCN4NZjUBAGXFd+9+rTBXOfom+LtTDq
1T17P3PoIvOCV5NfvDD6Na82SpzURrT2pKvtLWFELg54sopp48DgyRndEmFU
Prs2erROC9BPlWZ/K4wLHsPeHKu00Pe9/WzOWhHou//Zu6JIA/WJbkKxciKw
T7+s0ueigTzjn8VH9EQQyTEVwLtKA0dT2AbMnEVwtGys7Pp+dQhYGhp9yRTB
Tg+XKw5Qg0Nu/qKYrCgmxaWOCgqoAPZ619h0RLHutkVHbrcypJmfy/+yEMVL
vjdSVqnK+L1j0KnGTxSSoZmfi8SVcZVN8JFLoSjSbjQ8TdRTwtGHOTZmNaLQ
3Lx6L41FCR67Nb8pvBbFaanDgm9aFKFaYcO/OCEK3cWNg088FPF6T3RwiqYY
fFSsN+/SVEA5Dx/nmY1iqM9sqXjdKY/Mmlu3fR3F8II+Yvc9WB4B/NUdOmFi
OPNqestY1QZwNk2rvqsSA7VxauaYixwsZTzGeEzF4R8ePbl+UAaz5wIreuzE
kdT7Z7ooQwZ3fpw5c9NTHOuXr+q23SUD5qKsNcpnxRGXt/j85TtplOsPGVjW
iePm8cyIdf1S8M74zcb1Rhz3n711+HlDCtzMyzvefRbHowtbqx56S8G/UWaP
N7MEln2aa+SflITktr2xp4wkUJ/A++IZnyTaS0J3mttIoOucY9nnTxI4sSZG
cvVuCZS6Pq/typdAd29ueepJCcgwvT1hYC6BOJ8fH8uqJeB2KKghJ1IcDMcO
qPykSeJA4NOtUjJiyPtwYr5ksyRsGJwMbBnEsIMe2xDuLIkrb45sXP9WFCXL
H+xgOyaJ1rui80+jROEbP3FKslISWUzfUj0nRMA/zWz1/aUk6JbnymJaRdDg
wM1X1COJZedW3zG5JwLRdeq5BvOSCNp7LsnXWwRd2Yfbd+pK4b0JI9VgQBhn
2SNTxTZJIVk7tL6uThiq+xO8h3dIodh11/4XWcK4pFo2dzhUCvll4g7b9wjD
pGpWPK5cChfbCqrtfqzD/fbwwEZNaThGt1ht3CSEO2fc3T5ulIZbyZRTOa8Q
UtUtNv9xlIaLXVsHz2dBRCfwyWwIl0bb+m8PTxwTxO6dD7ovVUujLOLkVMET
ATiuTGrMbpNGd8e6SxxxArCuPF5S80kal85urdD0FICusNWliaUyuHw648pn
DgFwfR4ysjeXQepdPw9tn7VYcaVF8cAOGZTY3pBINlgLBpMSwWhfGWjpd6bl
86/FyO1T0xUXZFBvHO/T18yPur1Cd9e9loFL4MBbDho/gn7ZUL7skAWLAb+h
ju4a+N7UXlz0lUWwVy+bq9AauNmKjPAdlYVZEYbYGdfA6uGPOvN0Wfh9op76
3sAHqdCoI3mfZeHR2C0Rt4MPQnL+ng2TshieERPKMeADV4+dTT/LegRLnTmp
Js0HBpr4BorMetwdCQ3ImOLFW6aq/kC/9ZjK+MBzLYEXzQ9uvbxwdD0Sp5ns
+E/y4ql7TPnti+tx/bNjDpMvLwrrHeK7CtejOqLlzB/wIjp6wlRvaj2edZm5
7BrlgQ5FNp/5mBywZufxUzt50Mzo2PjyohwWjESdPlrwwGUs6tPVdDl42Ubl
Ruvw4HTrV16ZGjm0N1Uk3l9LxF/IPm65dAOmqyeT9fq44XK0K4mHZwN6g/rf
1LVyY9xveXGf5AaYe2XMnK/hBq+lz9cDZhuwtX0wtSuLiGeT2Xr13AZ8YSt/
iAAiftbe1zmZuH7zcmiOBzdOD0eelb63AY/0VvdaOHAju3GovLx5AzI8k+4p
GRDxEXfE+lbL43fA/M39VCKeWXpSKkEeZ6Pumf56wgWeie2rxu7I44CP7R3f
h1y48ylCprxMHkW/hsU587jwsuaL06b38piJtD3fdp2IP3G73l9IAVH6MeeU
jhDx/p39WgoKuPytX3zInws6Lsv+MEEBkfwGrrXeXHCheSlccVVApkuW/oA9
F7LnJRPKbipgD9PMmTptLuh+t7t/slgBS4wOC15S4UJz99kXFvUKuNbdFR8i
x4XxikGG3i8KGA/wH88V4oKQ3mvVE9yK4L2/LyGYmQtef2JTbtkronzR4pDu
GyrirUZqj7goIk3aTFyilYonGcbDlt6KkGMUeCv6nAo+s9/qU4cVYfZ7ZGxH
NRXP4p1aTa4pgunmmcaKPComvpRM8acpwlr4mI9RDhXCOpyCo1mKqFySHt5z
i4rgDzU+10oUEVy39LVpChUy8tJLht4o4ur3XNnvMVTYnTgh86hHEQsp23Yw
RFFxsv3d5ksDivhTaPZE7AwV70LOJ2tOKqI344FAUjgV0Q3jalFcShAv0KLo
76fim8tjb1kbJQw3ZbRtsCXyLeK5uOCohCjWfjmprVTQl/kXt7kp4chY7NIN
m6lIvifKFBqgBC+GL+5OG6nYNBtx/fllJXCYMe610CfytfxQnZaoBG3GNMMb
OlTcTNceOpihhK8x+RQWLSrmTL6rChQqYb67+ss3FSruxW1t9m1VQtgKjjQV
WSLfwbsTeEs8/6HLvl4pKli0l67l7ldCyra7fbESVOzqf+j1eFQJ7+49Xs4n
QgXHBkFGjlXKCHHQNb/IR8X++i8q+ZbKiAv5Obh6OTEfyN0rZ0fUyYfzy9Yt
o4Kzwv9G9i5lHPTx+6C6lIqC/BnKzf3KiBfkFg1hpGI8gW084bIyZhT9nnjO
UmBIbZXhSVJGFX/EmeLfFMSdj3eNy1SG60m7HrZpClRPCr46/0AZ+xUkKpt/
UYj/tkLByTfKyF44XpT9nYL6gV9fFnuU4bF5PkRphAJel9J14YPKYBwRflM1
TEHpNoOLh6eV0R4t1zL6hYIZPZt9vmtUoC5nUpP4kYIwzsNydk4qkDfyDlwg
+uQX0Trurz1UEC3kXPGxkwLBpQzJ1vtUsDKIf/p5BwWVM5FsFsdUELIjZDq3
nQKGT0nDtAwVuGw9Up/VSoG1k7Po42wVlAw6uxW0UJDRKeaofV8Fzswzmyqb
ifd9kduoWquCdvqx6sEXFJwqrrwjM6CCrxvZRbwbKWhXONWf9V0F+VdMZWKf
USCeY8onPqUCk1eCo1UNRF+f2hohtEwVeZU//SXrKWCJ/OhJlVFF84mMaMFa
CqIdWSTmfVUx8453MOsxBfqK7FNfD6migcFVjpPw2FJKQ0eYKlbUNA2FPqLA
vlDQpyBGFS7nma47VlAgwap2b3euKjh/2baolFHwtkf7qHWRKkZWPcnPL6Ug
5gE26z1SRaBbROkGwuO7No3xvFAF2y/9dYoPKXhSvFut6ZsqmH58sbQspuDQ
OR+Wh79UYXKjOqyriAIp1/2dN/6owiDt5UUvwhfYQ4+Es6nhyMs5w6gHFOzY
HftYcT3Rt8VuZ/1YSMEUZ7XxtT1qEMyiNX7MoyBnsJ7ndIAaZq4ufR5F2OnR
iy/+IWqIPvkOyoSfer2NMo9Ww3GmcP+IexRcrhx9OZ+thtcz93QMcymgx0+m
DheqwTZXT2viLgW/ff7s7yxTwzuPsbDbhHdxL6MUNqpBZ/P56tWE5XyF7Ny/
qkGf3p0/kU1Bv4G41JYxNfQUKFoVEI7jlf2tN6OG3DfeK/wIz9aoJfEuV8fY
9HDj1zsUPFtj2dskrQ67Is0vo7cp2N0Q6qnkrQ7HE52DslkUuOtKWk0Rfevx
Ykm36VsUeBa2qlUcVofijVsFTwl7X5dYahyhjpTnZWWuhPftb7lhn6UOPu6v
wrduUuD/+cg5wTx1yLxa7DpM+ICD+MGPxergqijYZEH4kNERQ986dTgxr7CZ
uEFBCK/Yh2Of1cGqbR9nRTgs5uUz+og6PEyznkkSDmcMLlg+oY69LpSMxUwK
jn97cSxuiQb0XnUrPiB8tipI6LaoBq4EF54RIRzr1bSjmejLd3N9/cmXQUF8
9yGjOG8NlIh8VZ1Np+DKlnXr7f01sM1ncOo94QSdQ7MfjmlgiqdlJJ1w6iqh
xMlUDaI/6vFRJJx++tnx8iwNzBZyenETzpgJ8D6Wp4GC0/Nts2kU3PzUoLG8
UgNDrhOj9YRzHh7oEOjRwEGPQA53wrlyApUfPmuAwum6ZRPhexn1t7JGNCAd
nTypSrjg3NpAxTkNSBa83LGMcIlzHZW+VhNM65gDC1IpqF62ZsteB03MiRen
UAgP3pA373LVhMFVt0cLKRSwg25kukcT9CpflW+E7YP3q4mFaqKfM1S8jvDo
UN2a98maGPik9DWMMNeZ95SNtzRxY9Q4Yy9hbZExtof3NBGlKJPlSPisg8BC
bKUm1uasvKxFWLAp4KN5vyY0BL0aZpOJ/4Vn5PvSIU2YX/5Y/Y2wN1Nqu+SY
Jux2iy52Ey7SbqxnYtKCpt4WvSeELe6uu1supoX+terZUYSPxLw4KOulBQ5G
KVspwqnSH30T9mthfG3Qn7WEnz6d9mAJ1kKLlWY7J2HOeVH7j5Fa8P2ZsObP
dQpu+x3RTcrRAg9VvfsV4RfLL6qxPtAC/wPfhQbC47duygdVEPd3hm+qJKzf
2yK89YUWGjykfO4SfmMluXTFDy2MvuK9FEF4dlhn4fCUFu46RM8dJSwcsWV6
YEELg9fWXgwi7FsV9rV6lTZ++k6LeRJeovj65RElbVx8XTNrQlhp9fGrXw9p
I/8VVycH4XLWTumGMG2cGtRoYiVsyCBfcfO0Nqa9gjqYCG8bfd/nHK+NNelZ
mtNJRP14qSHT8UAbG4918n0gvPj0QsWDCm3kur5sfE848tGA5eVabcxPN13q
IJx4Ny5g02tt8HMccH5B+FHUaEXNuDZ0peomSwkbnzCxSp/VBlXP3LKIcHNw
Sn84kw5s34qV5hPu87JYqkXRgdqqK/VZhJlMblvlK+nggOrs4yuEzZicP1z3
18HnIJHOIMKvZooPHgnWQTGd1eAgYccxdpbtx3WwZaa1bD/hvf3lspRLOnDh
oHR6E75QyXMoMl8Hcm9aynYQ5i3xY/F8qAPnGJ14e8Lp954mGFXpIFu3JNSW
cGFywOOFZh0I3mY4sJlwe0gzS+APHej3K48aEXYKkEjcOqUDJ2MHOQPCgz5h
6xUXdHBkdOKQPuFpe1nrbyt14ZbVLKVFmF/jbKLrBl0sE2FdpUDY5ZeenJWv
LkzU2x8LEF5JYWhtP6SL0MBt/vyEyxVrDu4I1wX9ivwGPsJc+0wqvC/o4pKM
Rh2V8LMhK/NTBbroOlrsw0Y4cNnqH8vLdFF5n3/PcsKikq8vX6rWBUtm6MFl
hMN2b+9KadPFwIeL6UsIK/Y6e5dO6GJItdZ5LpGCnjkRdtq8Loz9a27MEo5e
+zm/bqkepM6eH/1N+LO993Qbjx5OFPxJmSSc8Nr/7HdNPQgNRG4dJczQeOKm
aLgeqmWbFz4RvvfFyCz7jB4sHHYXfCTsyMIyonBBD+uedXp9IFxkFK2il6YH
drPJL72EvStja7ZX6yEpVFf2HWHunm2evY16cJtjZO0iXPOHZ4VHmx441vYP
dxIW0Lq+JeCTHuyno6veEG59cKM/Zqk+Su4rZ74iHN7mcZrKoQ+vJ1uyWgnL
jklJJ/Hoo4G1J6+F8Gn53P23pfTRJfD1xUvCmtlFC9Ub9XHP6ol2E+GM1DqB
6fP6OCBe+7KWcPJOuU7bq/oQ2RJOJZ3AH3e5KFUfIZl+O2sIX7jqwhKQrw9+
Wun0E8IhF/6MjrTqQ+/24a2VhAM3ueVYdOmjJ3R3wWPC/isa3XM+6ONULv9q
0p5nr3Z5jevjB1P5uwrCW48q1X6k0vDa2f98GWFL3YRwAwEajnr6MJA2m13Q
SBenQaqvNbCUsH7Qi1wnNRqeez/xekh4/T6vq2/taMS+gsGrmDDzrhSf5kQa
VN9cbCokvLiWWXxDJg0P9JucSc927ek9l0OD3Nf3UwWEf9pq2mysoGHNLXdZ
0t2Wr3WfdtMg8k0xK49wJ5v2tOgADRbnNm4k3daYXnjiOw1LNea+3yP8zHif
JG2BBqUoqi7pd6nMrD2rgKlii+G7hN/Oa3iwcwFR+wITSb/ZubdGhw8I/bnE
nHQrf1tYkjBQ0qqen0O4/mra2HYlIMTRKiqb8IML2u/btgJ1insO3ybsdp1j
abkdQO+21CdNufNRPsMR2FwlwELavzr65H43IIbPLyGLsNzEOxn2AIB3+EDD
LcLvGfJtfgUC3x6YXSEdvfJU+LsjQBP3j92khyTXv7pzAmjZfW0J6ZsOocHG
l4Fje1ZsuknYxnNzptwVwP71n3WkmQ6KvaAmAh4FmRM3CLvEPF/3MR14KrE0
nbRA1dqGowVAK/G9ZBKOF3/EXdoCbB8SepdB2EjpEi3tNTCrJ1pKelzP3eds
J7DtQuFV0tbb2R9v6wOcJPfakmaP3uk+9gPQ8ljZlU644qrihbfjANcxlQrS
e24wl1ZNAYvR7Smknz3KZbuwANy/dsyd9OnRufuyHAYwFqBPpxFWmWvtXk0x
wFkx9h7SH1lvscxwG6BNErWkIWrp2CBogFK1gUuk57alMLpvMIBKzIQi6UPl
etYpmwyQ1lh/MpVwsWMDU5e1AZ6Xv/MlPTVrXcxlawDzSOvtpI/ouPPHOBkg
aMRxA+mjj6I/h+wzgO7wo54UwlU7ua6VBBgg7lphE2mG+ZSN40EG8Df785D0
Sb3CPJ9jBnB4GRFHOqKyM9j+kgG2hTlZkX62y3V9fLwB9si36ZFesTjc05Jg
gJnySxtIx9AWDE0zDHDGcHAl6UtPxFeq3zfAO5fWV8mEk2oOZFDbDZDPkeJB
+r3bH5vNbw1wv0bYgbTAkjMs57oNwKrSvYl0qlHCXqYBA7z0mVIlfeNppdrY
pAGsWFKXkf7sbjYkN2sAwW11c9cJSy5tS/JeMIDESsFx0neMBxb7WAzB6e7Y
Qzq3nq2pmdcQEt8mi0l/97wStkLAEHgclUtaftk6BRNhQzilmd4gXWiqHP9Y
2hBvbutfJl3yzH5XrpYhrNhY9pOuaro1HrXDEGckPJVI3+drPRDubAhu5hpZ
0jc9Z3/67zbExVgtcdLRTJtHt+81xJ5fR3hJb9P+/U0i1BBBiSqLSYRNI0X3
rjlmiJBKlxnS2h2bhtlPGeK7bNYv0usCMoZ+RRtiyCR4iPRwtvlAdZIhdvbJ
vybdPX3IvTjVEFKR1GbSLcZpn+5kEvmGrmwkXfTh14eLOYag9tGqSB9bk9Lr
VG6ISVzJJc0VNdo502WI6sWKaNIsnWu2f+8xhMaD5rOkZ8TpHf0fDNFSN3aS
dO+ThPaGr4YI/+0VSjr7t8GrKzOGqHBd6Uc62cTXOmreEGLt131IX4i/2hLG
aIT6DE1P0ocUv73cvdwIli7JzqT1veOblNYYYeVaFhvSSiWVGyUEjfCdk9Ga
tDjz12d8IkbITGG1JL08Xa9hUdoIQTm6pqTbOwdrX2oawXS5ii5pH1Otxz72
RuBRV5Am/UN6TV3hTiMYR96VIB2wYubFjIsRDFVVxEiHvSztjvIxwtWXu4VI
X7LRnMsOMcJoJp2bNLcaH/P4USNscuShkk7i+c2mfcoIk1/HOEnf6Hq4tumc
EZQ+1LGTLnHW0BlONkLIqW5m0joGvEbKGUaotvjNRPqJ6LR5yC0jTKcIMJJu
HChxXJFnhPsmR+cTyfncqx4iW2UE9eSMKdJMwWplez4YwYnBfJh0hAN39f0B
IxQ97hkiza4z+Wz2qxEOfjn8hTT3QtHb6HEj5LFXfSYtfVr1d84SOvouX+kj
fc+Di+HXMjqiMh16SSubTizTYafjoLFYD2ndFUW8z7noeNdT/4705ksqGt8k
6DAt2tRBuv0AlaYiS8dinvYb0vY2v0xC5emoPLqhnbQbzwM7Ng06gkxE2kgH
JSsHrTejo3M9rZl08h2l4r176JgSNWog/axr97O0fXScKA2uJz2x4ur71wF0
2LYU1pG28Jtl1A2lY9ZQ/inpWaVaK/YYOjrSrKpJS+6edMUlOlyvpz4hvTVe
KvBQPJ3Y345Vkc6ZOne9O5mOpoz0StIOFduGcu/RIT0q/Ij06ZGzf/oL6dje
F1FBukCwjIO7hI5lQWPlpFmPC6qFV9Ih6v2ijHQpffCEZQsdX0TTH5LmaT68
9sdPOurzih+Q3qfYbWA3Q4eqaut90vWxRIvGaIzIpPFC0oHblxdfoBiDPm1Z
QPpFmd/7KX5j6O05m09aXKCN0VnMGJSHdXl/x7s/yUpB1ZioM9vvkZYzWjx0
TdcYHd45uaRP3dp9fZFuDNNOpr9W3iM31GJrjMHapzmkL/96fML/sDFaLkbc
Ic2yfzmjcIQx3rhevU06bHjb8ZarxmDwLcoiPeaRvng0yxgHS/tvkfb88O2o
fAkR78L/1907NRZ66oyx/bzLTdJb3p4MP//GGM8O3r/xd/20rAkbmTBG/umg
zL/zU18QYsFlAnYV1wzSqx+bHslRMUFqvV866bkHvYeX25jgNX9CGunBnMAg
7wATlMV0p/5dT/pl5XvjTXCLaf1f976aW9hXYgKTvksppB09YBTw1gR/2Nn+
+s3vUxGBsybQ7L2a/Hd817FxhumbgtHv3XXST01iE06eNEW/26a//mheohfF
aIatnElJpBk3v/t48bgZmvsV/5rBzGycd94MNrW/Ev/aoIQx/chGHLVr+Wt6
bodUGYM54lD615G805ZtEeaI5r7713OaG1gHllrAkOhmSPs77q6ZPmUBm4q0
v5b+YRF3nX0TDKkpf/3hhKo77comvCaqD+mQFV5p7mst4Vie9NdccYnvojIs
MaX/j3tefci+I2SF4T+Jf53FKXuk4boVONr/cVG1uPNhsc3oKf/H1QHrjKXu
bkZE7j9eHLnmPMRljWc3/3GqcLqA3jZrqKX/4zyrlxe2xlrjXMo/fhw2y+Dd
ao2J6/949NPxhTrqFown/WMRi2VzYtu3wPlf7zmfULtwZQtW/euiFplzXe1b
0Jf4j4UtuHrn+Lai+l/H1C8oCjttRcG/5hScsHySvBW3/3Xcwa97XLq3IvNf
Rz5dolfNb4O0fx3GLbRK1MEGKf86Nu2y7/NkGyT/62yZpU2H+m1w/V+/vXBq
LGndtv+bZYJxTfWubUj613axXc8Vbvzn24qFR1O//GcZtxyreT/b//v9xrL7
tt/+c9uNkA20g3b/9+8HW3RFx//zYmlA8dl92/9vC0UT47DJ/9zgpOCz96D9
/629zLqguOw/5xX4Ty8u/uf/AfMrcao=
"]]},
Annotation[#, "Charting`Private`Tag$7460#1"]& ]}, {}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{
FormBox["\"Ia\"", TraditionalForm], 
FormBox["\"La1\"", TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->{{
Thickness[Large], 
GrayLevel[0]}, {
Thickness[Large], 
GrayLevel[0]}},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"DefaultBoundaryStyle" -> Automatic, 
     "DefaultGraphicsInteraction" -> {
      "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
       "Effects" -> {
        "Highlight" -> {"ratio" -> 2}, 
         "HighlightPoint" -> {"ratio" -> 2}, 
         "Droplines" -> {
          "freeformCursorMode" -> True, 
           "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
     "DefaultMeshStyle" -> AbsolutePointSize[6], 
     "ScalingFunctions" -> None, 
     "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 99.99999795918367}, {0, 558.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic},
TicksStyle->Directive["Black", 14]]\)

Out[53]= \!\(\*
GraphicsBox[{{}, {{}, {}, 
{RGBColor[0, 1, 1], PointSize[0.009166666666666668], Thickness[0.008],
       LineBox[CompressedData["
1:eJxdk3lQU1cYxRFQK1grZREREQEBBcOu7JywhB1CgISELQmKU1vFdZQKTsQO
1hXqhCoRGXZ3HRHRKktEoVY0VQQUixqooOJYkdoOVJTa5t4/eG8mkzn55bzv
nne+t1CaxVupraWlpfj0+e9bcw0HaE2+MFl+hoaxEfZplbVSo2cj8/9rsFmj
jTDx1L3tdkAg4aYMbo5gr8YrOqWxhFsyuBWGk/IOh2cmEm7D4LZAUV2RzFBE
uD2DL4HJ4ID2H+OphDsyOIuRx5mhXWBosHxZPCeM/N8VF1OMB/dFDxDtBvdN
DlPV0gii3WE183z5zTn0/h6YzanakWEfSfQyzOp81WHHpnw58s4oWtsKKfeE
IsdCnc2l3Av6Tg9V8zoo98bbtbcs7ggo90H94wUbDk5Q7ouCUPd5ymTK/Rh5
/Bk6AAM7h5dy3ILI/4H07PpD/Jm/a7QMqLb2dNApCCWcjcRchT5rM8kvY6M3
s0Rvv1044YGIcVTlGr+jPBAOiqgp1Vr0+QSBVcAv5FiR88mCYFRUuv2bAsqD
8dG8QfjIg/JgVP6aLnfTpflC8MZ7hU+DL+UhjDycyVrGQcy70Xy7ZX7EHwr0
zRh6KH9K/KGwPNFZJRkLJjwMvScUD6zznxEehlWBRq1hCTR/OPSjnUpuyGi+
cOhMby+LP0X3IwIthlWhefcoj4Da/ouLq3+mzycS803el/e8pDwSRp2Gr1t+
ofmjYBa50i5qgvIoRr5oRr5ojF/X5t+qcyf+GIj1C930Nj4g/hgIsp+0f/V9
IOGx6CgaGx+Oof3Goks7d4vruRDCuajR0va80UPyg4udwyZLrHpIfhkXLAvF
h7Wh5HxKLp6vv7Jl/0qaLw4RZSUNTRWEIw52B+Q25cOEy+LA62+fWPWW+uMY
+XiTNXgoObrdddP4YuLnwb8noZTtcIf4eQiYc2pusDvI/HhwTo6KLqv6yPx4
NHJyki6tJv3K4rHuqB/b4BnJr4yHwqhm9TYj2m8CvPtfhrK7af4E7Lu/YE/G
BM2fgA8jV2s4ufT8CbBxO1K7ezPtPxGC+ePcqC6aP5HRF0MrEzH0vshp9IgZ
8fORdVRes2fXVeLnw3mdR12pvi+Zz8d56/Fdgudkf5V8TNdx9nBIpu+vAMEV
ZY1F6n7iFyC9sHh3xEHSr0wA9sCREtZWkk8pgLZFyFifgkP8SXBZOPeVJIKe
PwlZTUJ+oCHNn4Rizj+ytms0fxKjPyGjPyFGbPPGDnnrEr8QvSXXzHJMKohf
CNe+S7ZCV08yX4Sm48HN+ZzfyHwR6kdLZrU9YBO/CMu9KgSVH0m/ShGa7y5+
IjSm728y/j7ZL7lgQPtLxv1KXqRqFs2fjEU9ez3zzen5P+k9AfaqArr/KdBq
clx89hjNn8Loj6GVKahtkXYd2D/QpPkhFZwdLaOBLBnxp8Iz78/oKzfJ+ylL
xQwfieiEWTeZn4re4p8MfFl0f9NgulNusfBzur9pcPQ77WSzmby/sjT4VNV2
Rp2k+5sG20crto58R/tPR/Uu2Y/VQzR/Oi6Lwot7den+p6PrzdL1vAKaP53R
n3iythRjq1WDUf0xpSYfxPjWNLl/RX6sxi8WI1y+d7aniwu5vxgGqtdnbHTv
aXSZGG+mnb6dNkj2VymGnnHOulpTtUarxcjs3hg0tZPml+BGr9urFH+Sz1KC
PnnN1+5DpH9IUNBU1yW/SPKJJfhSdXiNeTZ9PhJsW1SX1bGR5CuTMPpiaLUE
TdentIx3Hif9SfHsrMggc+CvBs18KW5FDfcVq5aQ+VI8PrXB4MLUskbNfCki
go61nk32IvOl4LQ2X6qb3qrhZVKUsysVQ1x/kl8KsY/hNeeEbg1XS5GzRq3S
4dL8Gbi7pnepbnufhltm4IUs6dzjAcKRgR+m6bESW180/gtg17GA
"]]}}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(kV)\"", TraditionalForm], None}, {
FormBox["\"Time(ns)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{Automatic, 255.03085616446162`},
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 154.}, {-119.95202705813458`, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {
Scaled[0.05], 
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)

Out[54]= \!\(\*
GraphicsBox[{{{}, {{}, {}, 
{RGBColor[0, 0, 1], PointSize[0.007333333333333334], Thickness[0.008],
        LineBox[CompressedData["
1:eJxd10uMXXUBx/Hpu50+5v1oO525M+MCF7hxKxx3mqgL2IldmYhRF+JOYCvB
HS6Mr4UbQOOmiQlGTAz3aMFXgAAFBivUmelr2k7bed15FRh7zveX841zFpx8
Kb33nN/nPwUmv/n9R7+1t6ur6+v3/1Ldd19PD5770txTPyrG6+tcm/5p+pX2
y+PP3Hrk5V8XP/9Zdf0tv/5Cfv3N9q9+WV2/Ky68U1/558/ln3+/vfhI9Xd+
X3zjseq6mN//Un7/pXb3zPNPPNT9x2J5qbpm83l/yufNtz979rm/dh74c/GH
l6rrSj7/lXz+tfYL93/3zPNl8eQPq2sh3/eXfN/N9ufr63zx0BeqazHf/2q+
/077fOeB+9/wWsEaS3mev+d5ltqP1l/4j2J+rrqW83z/zPOttOeeqj7wX8Wr
56trNc/7ep53rf2D6vGeeKP47YvV1cnzv5nnX2/zvW8VP362ujbyPm/lfTbb
X66/4O3ie9+prq2839t5v+129W1nn3un+OpXqute3vdC3vfjdv06MxeKzz1Y
XZ/k/d/N+3/anqgeZ/y9orenunayx3vZo6v89uPV9X6ep6tkn5ns01VWnzZ4
bqb4bv18e0r2+iB77SnXq4/rfJDn3Vuy37+z397y4foDL+b595XseTF77ivr
x3vmP3mf/SX7fph995dvvF5dHxb16z14oGTvj7L3gXKofsBLxUT9vgdL9r+U
/Q+W9ced/W9Rv37PoZLXno3HobzPbPY4XOIzmz0O5/1ms8fhEq+5eB3J+85l
jyMlfnPZozvvP1+8W+/RXeI5nz2OZo/57HG0xPdy9jiWfS5nj2MlPJfjfTx7
XSl+U+9xvMT/SvxPZL8rxS/qPU6UnIerOQ892fNq9ugpOR9Xs0dv9r2W5+nN
ebmWfXqz97U8X2/Oz/Xs1Zv9r8evL+fpes5TXzwW8vx98VjInn3xWMj79Mdj
Ifv2x+NGvPvjcSPnrz8eN+I/EI+b2X+g/EntcTPvPxCPm/EYiMet7DEYj1vZ
YzAet7LHYDwWs8dgPBaLlXqPwXgsZo+heNzOHkPxuJ3zPRSP29ljKB53ct6H
43GnqOd4bDged7LHcDzuZo/heNzNHiPxuJs9RuKxlD1G8j5L2WMkPkvZYzTv
t1Q8XO8xGq+l7DGa913KHqPxW8r5GM37L+c8n4zncn6+TmaP5ZyPk/Fdzh4n
s89y0ar3OBXv5ZyPU9lrJef/VPxX8vN4KvutFH31Hqfz87mSPU5nz5WinuPZ
0zkfK9njdPZdzR5jOS+rOR9j2Xs1e4zl/Kxmj7Hsv5o9xnKeVrPHmXisZY8z
8VjLHmfisZY9zsRjLT8v4/FYyx7j8VjLHuPxWMv5GI9HJ38+TMSjU3yt3mMi
Hp2cj4l4dIrX6j0m4tHJHq14dHJeW/FYzz6teKzn+VrxWM9erXis5zy34rGe
/VrxWM/zt+KxkT1b8djIeZ+Mx0Z+/ibjsRHvyXhs5OdxMh4b8Z+Mx2b2n4zH
Zt5/Mh6b8ZiMx2b2mIrHZnym4rGZPabisZk9puKxlT2m4rGVPabisZU9puKx
lT2m4rGVP3+m4rGVPabjsZ3zNh2P7ewxHY/tnL/p/Hm5Hf/peGwX9RwvTsdj
Oz8f0/G4lz2m43Eve3wmHjYeNh42Hjb3j5vGw8bDxsPGw8bDxsPG45Om8bDx
sPGw8bDxsPH4tGk8bDxsPGw8bDxsPHaaxmNnl8fOLo+dXR47uzx2dnl0ffH/
38fGx+b9bLzs+nUft/Gz+fPBxtNmDxtfm31svG322tM0/jb72ZwHmz1tzofN
vjbnxWZvm/Njs7/NebK5720aDxsPGw8bD5vzZ+Nh42HjYeNh42HjYeNh47Gv
aTxsPGw8bDxsPGw8bDxsPGw8bDxsPGzu+5vGw8bDxsPGw8bDxsPGw8bDxsPG
w8bDxsPG40DTeNh42HjYeNh42HjYeNh42HjYeNh42NwPNo2HjYeNh42HjYeN
h42HjYeNh42HjYeNh43HoabxsPGw8bDxsPGw8bDxsPGw8bDxsPGwuR9uGg8b
DxsPGw8bDxsPm39/2njYeNh42HjYeNh4HGkaDxsPGw8bDxsPGw8bDxsPGw8b
DxsPm3t303jYeNh42HjYeNh42HjYeNh42HjYeNh42Dze0abxsPGw8bDxsPGw
8bDxsPGw8bDxsPGwuR9rGg8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPG4/jTeNh
42HjYeNh42HjYeNh42HjYeNh42FzP9E0HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42Hj1N42HjYeNh42HjYeNh42HjYeNh42HjYXPv3fU+Nj4272fjZfO+Nn42
72/jabOHzf/P2Oxj422zl81/P9jsZ3MebPa0OR82+9qcF5u9bc6Pzf4258nm
3tc0HjYeNh42HjYeNh42HjYeNh42P282HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42HjYeNvf+pvGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDx
sPGw8bDxsPGw8bDxsLkPNI2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeN
h42HjYeNh42HjYeNh42HjYeNh819sGk8bDxsPGw8bDxsPGw8bDxsPGw8bDxs
PGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGzuQ03jYeNh42HjYeNh42HjYeNh
42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42FzH24aDxsPGw8bDxsP
Gw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw+b+0jTeNh4
2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjY
3Eeb/h9mER2X
"]]}}, {{}, {}}}, {{}, {{}, {}, 
{RGBColor[0, 1, 1], PointSize[0.009166666666666668], Thickness[0.008],
        LineBox[CompressedData["
1:eJxdk3lQU1cYxRFQK1grZREREQEBBcOu7JywhB1CgISELQmKU1vFdZQKTsQO
1hXqhCoRGXZ3HRHRKktEoVY0VQQUixqooOJYkdoOVJTa5t4/eG8mkzn55bzv
nne+t1CaxVupraWlpfj0+e9bcw0HaE2+MFl+hoaxEfZplbVSo2cj8/9rsFmj
jTDx1L3tdkAg4aYMbo5gr8YrOqWxhFsyuBWGk/IOh2cmEm7D4LZAUV2RzFBE
uD2DL4HJ4ID2H+OphDsyOIuRx5mhXWBosHxZPCeM/N8VF1OMB/dFDxDtBvdN
DlPV0gii3WE183z5zTn0/h6YzanakWEfSfQyzOp81WHHpnw58s4oWtsKKfeE
IsdCnc2l3Av6Tg9V8zoo98bbtbcs7ggo90H94wUbDk5Q7ouCUPd5ymTK/Rh5
/Bk6AAM7h5dy3ILI/4H07PpD/Jm/a7QMqLb2dNApCCWcjcRchT5rM8kvY6M3
s0Rvv1044YGIcVTlGr+jPBAOiqgp1Vr0+QSBVcAv5FiR88mCYFRUuv2bAsqD
8dG8QfjIg/JgVP6aLnfTpflC8MZ7hU+DL+UhjDycyVrGQcy70Xy7ZX7EHwr0
zRh6KH9K/KGwPNFZJRkLJjwMvScUD6zznxEehlWBRq1hCTR/OPSjnUpuyGi+
cOhMby+LP0X3IwIthlWhefcoj4Da/ouLq3+mzycS803el/e8pDwSRp2Gr1t+
ofmjYBa50i5qgvIoRr5oRr5ojF/X5t+qcyf+GIj1C930Nj4g/hgIsp+0f/V9
IOGx6CgaGx+Oof3Goks7d4vruRDCuajR0va80UPyg4udwyZLrHpIfhkXLAvF
h7Wh5HxKLp6vv7Jl/0qaLw4RZSUNTRWEIw52B+Q25cOEy+LA62+fWPWW+uMY
+XiTNXgoObrdddP4YuLnwb8noZTtcIf4eQiYc2pusDvI/HhwTo6KLqv6yPx4
NHJyki6tJv3K4rHuqB/b4BnJr4yHwqhm9TYj2m8CvPtfhrK7af4E7Lu/YE/G
BM2fgA8jV2s4ufT8CbBxO1K7ezPtPxGC+ePcqC6aP5HRF0MrEzH0vshp9IgZ
8fORdVRes2fXVeLnw3mdR12pvi+Zz8d56/Fdgudkf5V8TNdx9nBIpu+vAMEV
ZY1F6n7iFyC9sHh3xEHSr0wA9sCREtZWkk8pgLZFyFifgkP8SXBZOPeVJIKe
PwlZTUJ+oCHNn4Rizj+ytms0fxKjPyGjPyFGbPPGDnnrEr8QvSXXzHJMKohf
CNe+S7ZCV08yX4Sm48HN+ZzfyHwR6kdLZrU9YBO/CMu9KgSVH0m/ShGa7y5+
IjSm728y/j7ZL7lgQPtLxv1KXqRqFs2fjEU9ez3zzen5P+k9AfaqArr/KdBq
clx89hjNn8Loj6GVKahtkXYd2D/QpPkhFZwdLaOBLBnxp8Iz78/oKzfJ+ylL
xQwfieiEWTeZn4re4p8MfFl0f9NgulNusfBzur9pcPQ77WSzmby/sjT4VNV2
Rp2k+5sG20crto58R/tPR/Uu2Y/VQzR/Oi6Lwot7den+p6PrzdL1vAKaP53R
n3iythRjq1WDUf0xpSYfxPjWNLl/RX6sxi8WI1y+d7aniwu5vxgGqtdnbHTv
aXSZGG+mnb6dNkj2VymGnnHOulpTtUarxcjs3hg0tZPml+BGr9urFH+Sz1KC
PnnN1+5DpH9IUNBU1yW/SPKJJfhSdXiNeTZ9PhJsW1SX1bGR5CuTMPpiaLUE
TdentIx3Hif9SfHsrMggc+CvBs18KW5FDfcVq5aQ+VI8PrXB4MLUskbNfCki
go61nk32IvOl4LQ2X6qb3qrhZVKUsysVQ1x/kl8KsY/hNeeEbg1XS5GzRq3S
4dL8Gbi7pnepbnufhltm4IUs6dzjAcKRgR+m6bESW180/gtg17GA
"]]}}, {{}, {}}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(kV)\"", TraditionalForm], None}, {
FormBox["\"Time(ns)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 6.}, {-10., 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {
Scaled[0.05], 
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)
Posted 3 years ago

In the WL underscore is interpreted as Blank, so Resl_pair is not a symbol with that name.

Resl_pair // FullForm
(* Pattern[Resl, Blank[pair]] *)

Don't use _ in symbol names.

POSTED BY: Rohit Namjoshi
ClearAll["Global '*"];
NN = 11;

tmax = 6.0;

fN = 1.0;
Rs = 50.0;
Rescimpair = Table[Rc[k] = 0.0, {k, 1, NN, 2}];
Rescpair = Table[Rc[k] = 0.0, {k, 2, NN, 2}];
Rc[NN] = 1100.0;
Reslimpair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Reslpair = Table[Rl[k] = 0.0, {k, 2, NN, 2}];
Rl[NN] = 200.0;
t0 = 0.0; ts = 1.7 + t0; tflat = 300.0; tfall = 1.7; tc = ts + tflat;
td = tc + tfall; a0 = -10.0*10^3; {ts, tflat, tfall, td - tc}
Vs[t_] := Which[t <= t0, 0, t > t0  && t <= ts, a0 *(t - t0)/ts - t0,
  t > ts && t <= tc, a0, t > t0 && t <= td, a0*((-t + td)/(td - tc)), 
  t > td, 0]
TabVs = Table[{t, Vs[t]/1000}, {t, 0, tmax, 0.01}];
VoltVs = ListPlot[TabVs, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]

np = 256; tfourier = 1000;
pulse = Table[Vs[t]/1000, {t, 0, tfourier, 0.05}];
datafin = Table[{f/(1.2), Abs[Fourier[pulse]][[f]]}, {f, 1, 60, 1}];
pVs = ListPlot[datafin, PlotRange -> {{0, 50}, All}, 
  PlotStyle -> {AbsoluteThickness[1.8], RGBColor[0, 1, 0], 
    Thickness[0.008]}, FrameLabel -> {"Frequence(Mhz)", "Voltage(V)"},
   Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
NIntegrate[Vs[t]/1000, {t, 0, 200}]
(*non linear capacitor*)
m = 1.08; V0 = 0.7; Cs0 = 0.000095;
p = (1.0 + 1*V[k][t]/V0)^m
Cv[k_][t_] := which[V[k][t] > -V0, Cs0/p, V[k][t] <= -V0, 10.0]
Cv[k_][t_] := Cs0/p
Ca[Va_] := Cs0/(1.0 + 1*Va/V0)^m 
Cv[NN][t] := 10000000.0;
Plot[{Ca[Va]}, {Va, 0, 15}, AxesLabel -> {"Va", "Ca"}, 
 PlotRange -> {0, Cs0}, PlotStyle -> {Thickness[.01], Red}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
(*non linear inductance*)
L0 = 465; La = 4.65; Is = 3.76;
Ls[k_][t_] := (L0 - La)*(Sech[i[k][t]/Is]^2) + La
La1[Ia_] := (L0 - La)*(Sech[(Ia/Is)]^2) + La
Plot[{La1[Ia]}, {Ia, 0, 100}, AxesLabel -> {"Ia", "La1"}, 
 PlotRange -> {0, L0*1.2}, PlotStyle -> {Thickness[.01], Orange}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
Ls[NN][t] := 1.0*10^-8
Ls[k_][t_] := 280.0
(*Equation for the First Section*)
eqi = Table[{-i[k]'[t] + 
      Vs[t]/Ls[k][t] - (Rs/Ls[k][t])*
       i[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 1, 1}];

(*Equation for the intermediate Section*)
eqs = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t]) *(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 2, 
    NN - 1}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
(*Equation for the finale Section*)
eqf = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t] )*(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] ) - (V[k][t])/
       Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t])/Cv[k][t] == 0}, {k, NN, NN}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
initial1 = Flatten[Table[{i[k][0] == 0., V[k][0] == 0.}, {k, 1, NN}]];
Vlist = Flatten[Table[{V[k][t], i[k][t]}, {k, 1, NN}]];
sol = NDSolve[Join[eqfinal, initial1], Vlist, {t, 0., tmax}, 
   MaxSteps -> Infinity];
sol1 = Flatten[sol];
inputiv = 
  Table[{i[k][t] = i[k][t] /. sol1, V[k][t] = V[k][t] /. sol1}, {k, 1,
     NN}];
outiv = Flatten[inputiv];
V[0][t_] := Vs[t] - Rs*i[1][t];
Vfp = Table[
   V[k][t_] = Rc[k]*(i[k][t] - i[k + 1][t]) + V[k][t], {k, 1, NN - 1}];
V[NN][t_] := Rc[NN]*(i[NN][t]) + V[NN][t]
Pload[t_] := V[NN][t] i[NN][t]
Pint[t_] := Vs[t] i[1][t]
VoltFim = 
 ListPlot[outiv, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
Show[VoltVs, VoltFim]

the plot is empty, please i need help

The NDSolve worked for me, once I first made the following correction in your code:

Resl_pair = Table[Rl[k] = 0.0, {k, 2, NN, 2}];
POSTED BY: Frank Iannarilli

Hi Frank... Please show your graph.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract