Message Boards Message Boards

Error in NDSolve of transmission line?

Posted 3 years ago

ClearAll["Global '*"]; NN = 11;

tmax = 6.0;

fN = 1.0;
Rs = 50.0;
Resc_impair = Table[Rc[k] = 0.0, {k, 1, NN, 2}];
Resc_pair = Table[Rc[k] = 0.0, {k, 2, NN, 2}];
Rc[NN] = 1100.0;
Resl_impair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Resl_pair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Rl[NN] = 200.0;
t0 = 0.0; ts = 1.7 + t0; tflat = 300.0; tfall = 1.7; tc = ts + tflat;
td = tc + tfall; a0 = -10.0*10^3; {ts, tflat, tfall, td - tc}
Vs[t_] := Which[t <= t0, 0, t > t0  && t <= ts, a0 *(t - t0)/ts - t0,
  t > ts && t <= tc, a0, t > t0 && t <= td, a0*((-t + td)/(td - tc)), 
  t > td, 0]
TabVs = Table[{t, Vs[t]/1000}, {t, 0, tmax, 0.01}];
VoltVs = ListPlot[TabVs, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]

np = 256; tfourier = 1000;
pulse = Table[Vs[t]/1000, {t, 0, tfourier, 0.05}];
datafin = Table[{f/(1.2), Abs[Fourier[pulse]][[f]]}, {f, 1, 60, 1}];
pVs = ListPlot[datafin, PlotRange -> {{0, 50}, All}, 
  PlotStyle -> {AbsoluteThickness[1.8], RGBColor[0, 1, 0], 
    Thickness[0.008]}, FrameLabel -> {"Frequence(Mhz)", "Voltage(V)"},
   Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
NIntegrate[Vs[t]/1000, {t, 0, 200}]
(*non linear capacitor*)
m = 1.08; V0 = 0.7; Cs0 = 0.000095;
p = (1.0 + 1*V[k][t]/V0)^m
Cv[k_][t_] := which[V[k][t] > -V0, Cs0/p, V[k][t] <= -V0, 10.0]
Cv[k_][t_] := Cs0/p
Ca[Va_] := Cs0/(1.0 + 1*Va/V0)^m 
Cv[NN][t] := 10000000.0;
Plot[{Ca[Va]}, {Va, 0, 15}, AxesLabel -> {"Va", "Ca"}, 
 PlotRange -> {0, Cs0}, PlotStyle -> {Thickness[.01], Red}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
(*non linear inductance*)
L0 = 465; La = 4.65; Is = 3.76;
Ls[k_][t_] := (L0 - La)*(Sech[i[k][t]/Is]^2) + La
La1[Ia_] := (L0 - La)*(Sech[(Ia/Is)]^2) + La
Plot[{La1[Ia]}, {Ia, 0, 100}, AxesLabel -> {"Ia", "La1"}, 
 PlotRange -> {0, L0*1.2}, PlotStyle -> {Thickness[.01], Orange}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
Ls[NN][t] := 1.0*10^-8
Ls[k_][t_] := 280.0
(*Equation for the First Section*)
eqi = Table[{-i[k]'[t] + 
      Vs[t]/Ls[k][t] - (Rs/Ls[k][t])*
       i[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 1, 1}];

(*Equation for the intermediate Section*)
eqs = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t]) *(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 2, 
    NN - 1}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
(*Equation for the finale Section*)
eqf = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t] )*(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] ) - (V[k][t])/
       Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t])/Cv[k][t] == 0}, {k, NN, NN}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
initial1 = Flatten[Table[{i[k][0] == 0., V[k][0] == 0.}, {k, 1, NN}]];
Vlist = Flatten[Table[{V[k][t], i[k][t]}, {k, 1, NN}]];
sol = NDSolve[Join[eqfinal, initial1], Vlist, {t, 0., tmax}, 
   MaxSteps -> Infinity];
sol1 = Flatten[sol];
inputiv = 
  Table[{i[k][t] = i[k][t] /. sol1, V[k][t] = V[k][t] /. sol1}, {k, 1,
     NN}];
outiv = Flatten[inputiv];
V[0][t_] := Vs[t] - Rs*i[1][t];
Vfp = Table[
   V[k][t_] = Rc[k]*(i[k][t] - i[k + 1][t]) + V[k][t], {k, 1, NN - 1}];
V[NN][t_] := Rc[NN]*(i[NN][t]) + V[NN][t]
Pload[t_] := V[NN][t] i[NN][t]
Pint[t_] := Vs[t] i[1][t]
VoltFim = 
 ListPlot[outiv, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
Show[VoltVs, VoltFim]
Error:NDSolve::nlnum: The function value {-0.00174035,-1. (1.68378*10^-10-1.66057*10^-17 Rl[2]),0.,0.,0.,0.,0.,0.,0.,0.,<<12>>} is not a list of numbers with dimensions {22} at {t,i[1][t],i[2][t],i[3][t],i[4][t],i[5][t],i[6][t],i[7][t],i[8][t],i[9][t],<<17>>} = {0.0000828415,-1.0813*10^-7,-4.64959*10^-15,0.,0.,0.,0.,0.,0.,0.,<<17>>}.
7 Replies
In[1]:= ClearAll["Global '*"];
NN = 11;

tmax = 6.0;

fN = 1.0;
Rs = 50.0;
Rescimpair = Table[Rc[k] = 0.0, {k, 1, NN, 2}];
Rescpair = Table[Rc[k] = 0.0, {k, 2, NN, 2}];
Rc[NN] = 1100.0;
Reslimpair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Reslpair = Table[Rl[k] = 0.0, {k, 2, NN, 2}];
Rl[NN] = 200.0;
t0 = 0.0; ts = 1.7 + t0; tflat = 300.0; tfall = 1.7; tc = ts + tflat;
td = tc + tfall; a0 = -10.0*10^3; {ts, tflat, tfall, td - tc}
Vs[t_] := Which[t <= t0, 0, t > t0  && t <= ts, a0 *(t - t0)/ts - t0,
  t > ts && t <= tc, a0, t > t0 && t <= td, a0*((-t + td)/(td - tc)), 
  t > td, 0]
TabVs = Table[{t, Vs[t]/1000}, {t, 0, tmax, 0.01}];
VoltVs = ListPlot[TabVs, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]

np = 256; tfourier = 1000;
pulse = Table[Vs[t]/1000, {t, 0, tfourier, 0.05}];
datafin = Table[{f/(1.2), Abs[Fourier[pulse]][[f]]}, {f, 1, 60, 1}];
pVs = ListPlot[datafin, PlotRange -> {{0, 50}, All}, 
  PlotStyle -> {AbsoluteThickness[1.8], RGBColor[0, 1, 0], 
    Thickness[0.008]}, FrameLabel -> {"Frequence(Mhz)", "Voltage(V)"},
   Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
NIntegrate[Vs[t]/1000, {t, 0, 200}]
(*non linear capacitor*)
m = 1.08; V0 = 0.7; Cs0 = 0.000095;
p = (1.0 + 1*V[k][t]/V0)^m
Cv[k_][t_] := which[V[k][t] > -V0, Cs0/p, V[k][t] <= -V0, 10.0]
Cv[k_][t_] := Cs0/p
Ca[Va_] := Cs0/(1.0 + 1*Va/V0)^m 
Cv[NN][t] := 10000000.0;
Plot[{Ca[Va]}, {Va, 0, 15}, AxesLabel -> {"Va", "Ca"}, 
 PlotRange -> {0, Cs0}, PlotStyle -> {Thickness[.01], Red}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
(*non linear inductance*)
L0 = 465; La = 4.65; Is = 3.76;
Ls[k_][t_] := (L0 - La)*(Sech[i[k][t]/Is]^2) + La
La1[Ia_] := (L0 - La)*(Sech[(Ia/Is)]^2) + La
Plot[{La1[Ia]}, {Ia, 0, 100}, AxesLabel -> {"Ia", "La1"}, 
 PlotRange -> {0, L0*1.2}, PlotStyle -> {Thickness[.01], Orange}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
Ls[NN][t] := 1.0*10^-8
Ls[k_][t_] := 280.0
(*Equation for the First Section*)
eqi = Table[{-i[k]'[t] + 
      Vs[t]/Ls[k][t] - (Rs/Ls[k][t])*
       i[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 1, 1}];

(*Equation for the intermediate Section*)
eqs = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t]) *(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 2, 
    NN - 1}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
(*Equation for the finale Section*)
eqf = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t] )*(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] ) - (V[k][t])/
       Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t])/Cv[k][t] == 0}, {k, NN, NN}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
initial1 = Flatten[Table[{i[k][0] == 0., V[k][0] == 0.}, {k, 1, NN}]];
Vlist = Flatten[Table[{V[k][t], i[k][t]}, {k, 1, NN}]];
sol = NDSolve[Join[eqfinal, initial1], Vlist, {t, 0., tmax}, 
   MaxSteps -> Infinity];
sol1 = Flatten[sol];
inputiv = 
  Table[{i[k][t] = i[k][t] //. sol1, V[k][t] = V[k][t] //. sol1}, {k, 
    1, NN}, {t, 0., tmax}];
outiv = Flatten[inputiv];
V[0][t_] := Vs[t] - Rs*i[1][t];
Vfp = Table[
   V[k][t_] = Rc[k]*(i[k][t] - i[k + 1][t]) + V[k][t], {k, 1, 
    NN - 1}, {t, 0., tmax}];
V[NN][t_] := Rc[NN]*(i[NN][t]) + V[NN][t]
Pload[t_] := V[NN][t] i[NN][t]
Pint[t_] := Vs[t] i[1][t]
VoltFim = 
 ListPlot[outiv, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 1, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
Show[VoltVs, VoltFim]

Out[13]= {1.7, 300., 1.7, 1.7}

Out[16]= \!\(\*
GraphicsBox[{{}, {{}, {}, 
{RGBColor[0, 0, 1], PointSize[0.007333333333333334], Thickness[0.008],
       LineBox[CompressedData["
1:eJxd10uMXXUBx/Hpu50+5v1oO525M+MCF7hxKxx3mqgL2IldmYhRF+JOYCvB
HS6Mr4UbQOOmiQlGTAz3aMFXgAAFBivUmelr2k7bed15FRh7zveX841zFpx8
Kb33nN/nPwUmv/n9R7+1t6ur6+v3/1Ldd19PD5770txTPyrG6+tcm/5p+pX2
y+PP3Hrk5V8XP/9Zdf0tv/5Cfv3N9q9+WV2/Ky68U1/558/ln3+/vfhI9Xd+
X3zjseq6mN//Un7/pXb3zPNPPNT9x2J5qbpm83l/yufNtz979rm/dh74c/GH
l6rrSj7/lXz+tfYL93/3zPNl8eQPq2sh3/eXfN/N9ufr63zx0BeqazHf/2q+
/077fOeB+9/wWsEaS3mev+d5ltqP1l/4j2J+rrqW83z/zPOttOeeqj7wX8Wr
56trNc/7ep53rf2D6vGeeKP47YvV1cnzv5nnX2/zvW8VP362ujbyPm/lfTbb
X66/4O3ie9+prq2839t5v+129W1nn3un+OpXqute3vdC3vfjdv06MxeKzz1Y
XZ/k/d/N+3/anqgeZ/y9orenunayx3vZo6v89uPV9X6ep6tkn5ns01VWnzZ4
bqb4bv18e0r2+iB77SnXq4/rfJDn3Vuy37+z397y4foDL+b595XseTF77ivr
x3vmP3mf/SX7fph995dvvF5dHxb16z14oGTvj7L3gXKofsBLxUT9vgdL9r+U
/Q+W9ced/W9Rv37PoZLXno3HobzPbPY4XOIzmz0O5/1ms8fhEq+5eB3J+85l
jyMlfnPZozvvP1+8W+/RXeI5nz2OZo/57HG0xPdy9jiWfS5nj2MlPJfjfTx7
XSl+U+9xvMT/SvxPZL8rxS/qPU6UnIerOQ892fNq9ugpOR9Xs0dv9r2W5+nN
ebmWfXqz97U8X2/Oz/Xs1Zv9r8evL+fpes5TXzwW8vx98VjInn3xWMj79Mdj
Ifv2x+NGvPvjcSPnrz8eN+I/EI+b2X+g/EntcTPvPxCPm/EYiMet7DEYj1vZ
YzAet7LHYDwWs8dgPBaLlXqPwXgsZo+heNzOHkPxuJ3zPRSP29ljKB53ct6H
43GnqOd4bDged7LHcDzuZo/heNzNHiPxuJs9RuKxlD1G8j5L2WMkPkvZYzTv
t1Q8XO8xGq+l7DGa913KHqPxW8r5GM37L+c8n4zncn6+TmaP5ZyPk/Fdzh4n
s89y0ar3OBXv5ZyPU9lrJef/VPxX8vN4KvutFH31Hqfz87mSPU5nz5WinuPZ
0zkfK9njdPZdzR5jOS+rOR9j2Xs1e4zl/Kxmj7Hsv5o9xnKeVrPHmXisZY8z
8VjLHmfisZY9zsRjLT8v4/FYyx7j8VjLHuPxWMv5GI9HJ38+TMSjU3yt3mMi
Hp2cj4l4dIrX6j0m4tHJHq14dHJeW/FYzz6teKzn+VrxWM9erXis5zy34rGe
/VrxWM/zt+KxkT1b8djIeZ+Mx0Z+/ibjsRHvyXhs5OdxMh4b8Z+Mx2b2n4zH
Zt5/Mh6b8ZiMx2b2mIrHZnym4rGZPabisZk9puKxlT2m4rGVPabisZU9puKx
lT2m4rGVP3+m4rGVPabjsZ3zNh2P7ewxHY/tnL/p/Hm5Hf/peGwX9RwvTsdj
Oz8f0/G4lz2m43Eve3wmHjYeNh42Hjb3j5vGw8bDxsPGw8bDxsPG45Om8bDx
sPGw8bDxsPH4tGk8bDxsPGw8bDxsPHaaxmNnl8fOLo+dXR47uzx2dnl0ffH/
38fGx+b9bLzs+nUft/Gz+fPBxtNmDxtfm31svG322tM0/jb72ZwHmz1tzofN
vjbnxWZvm/Njs7/NebK5720aDxsPGw8bD5vzZ+Nh42HjYeNh42HjYeNh47Gv
aTxsPGw8bDxsPGw8bDxsPGw8bDxsPGzu+5vGw8bDxsPGw8bDxsPGw8bDxsPG
w8bDxsPG40DTeNh42HjYeNh42HjYeNh42HjYeNh42NwPNo2HjYeNh42HjYeN
h42HjYeNh42HjYeNh43HoabxsPGw8bDxsPGw8bDxsPGw8bDxsPGwuR9uGg8b
DxsPGw8bDxsPm39/2njYeNh42HjYeNh4HGkaDxsPGw8bDxsPGw8bDxsPGw8b
DxsPm3t303jYeNh42HjYeNh42HjYeNh42HjYeNh42Dze0abxsPGw8bDxsPGw
8bDxsPGw8bDxsPGwuR9rGg8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPG4/jTeNh
42HjYeNh42HjYeNh42HjYeNh42FzP9E0HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42Hj1N42HjYeNh42HjYeNh42HjYeNh42HjYXPv3fU+Nj4272fjZfO+Nn42
72/jabOHzf/P2Oxj422zl81/P9jsZ3MebPa0OR82+9qcF5u9bc6Pzf4258nm
3tc0HjYeNh42HjYeNh42HjYeNh42P282HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42HjYeNvf+pvGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDx
sPGw8bDxsPGw8bDxsLkPNI2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeN
h42HjYeNh42HjYeNh42HjYeNh819sGk8bDxsPGw8bDxsPGw8bDxsPGw8bDxs
PGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGzuQ03jYeNh42HjYeNh42HjYeNh
42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42FzH24aDxsPGw8bDxsP
Gw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw+b+0jTeNh4
2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjY
3Eeb/h9mER2X
"]]}}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(kV)\"", TraditionalForm], None}, {
FormBox["\"Time(ns)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 6.}, {-10., 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {
Scaled[0.05], 
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)

Out[20]= \!\(\*
GraphicsBox[{{}, {{}, {}, 
{RGBColor[0, 1, 0], PointSize[0.011000000000000001`], Thickness[
      0.008], LineBox[CompressedData["
1:eJw1kX8s1HEYxy90yq84vhi5yZHuIj/y+3Dv4+6QbBJqJfRLuSkW0Y81FtpM
zMRObJYRjbq0aaU0WiPSrnH8IVYLKZep/EFpVHwfz/bZZ8+e1+e1957PjhOZ
caf1OBxO8P+zdre1rpVOMqpOOlncegVsvyxx2x+UrRzLBWe9DLDZvaPfvlVJ
cyO8f1GyLcZEQb05mL/i7i79A8RbYXcIX5WXn4jEhLWywfNAsTqVJyfeDnXj
LYn3+X7E84HQy3lC22iaO6KvjytuLgin904YTm/8U2GsT7wzHo5ftU/2lxLv
gvaYJvmhDCnxrvikXVUtahyJF4KpOhUR/dKHeBFsU5YsCydDiHeDdfBXnjHP
nfg9cOU6TIjeOhPvganDskumqQHUe+Ke2rChtMmL5Qu8sLxQOaNZ0SOfNxbM
f29xrfFmedFeND5t2+dT5k1+H3wsvWNt+cGU5Ud9MH9m00DvXSH5fTGYlOM4
Pbjh90NhKldrLnMkvz9EFc/mNPEO5A+AwbVurbLGg/yBSPU2e1D804X8gXCu
aM1YmNEjfxAkFjdNvo0JyS9GtNXB8tWBXeQPRktUV5SH56qE9YcgTTuo5hsL
yB+KiTBBAiMQkj8UTPkxST+PIb8EqoLM2721NiwPQJU1cb3kuCvNgUkFd8W9
j8++Z6TI6dn6nXmtR3mkEDVXd2iWBCyvk2LqS0BaltyJ8oUhO6ChM7ZjTrLO
94Sh0Oyov/8rPu0jHBq5kX29VMDy1eHIT88/d8PWlPLLMNyRlVMrtmJ5pQyG
9pWZs0XkH5WhLuVN8+N5a8ovx60qnVNy/cb+5ICwyMQ3nv6DUSA3RW3+Wbmd
8iugrc171MkdZvenU+Bs7PkhTxM7yh+B7HDV8vQsn+V7IrDzgiUz0mRA+SMx
HDe06PDLgvJHYnZideRIGfGcKLx78uNibrsF/gG0uWwb
"]]}}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(V)\"", TraditionalForm], None}, {
FormBox["\"Frequence(Mhz)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 50}, {0, 426.6575654621532}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {
Scaled[0.02], 
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]\)

Out[21]= -1991.5

Out[23]= (1. + 1.42857 V[k][t])^1.08

Out[28]= \!\(\*
GraphicsBox[{{{}, {}, 
TagBox[
{RGBColor[1, 0, 0], Thickness[0.01], Opacity[1.], 
       LineBox[CompressedData["
1:eJwVzHc81fsfwHHnHGRkz8zIyPgKZRWf9welSxmV2S0qVApJh2426WpoK+Oq
cDWVlRUN0a04J7IPsiIh4xzHyXGEX78/Xo/Xf0+NQyd2B5L5+Pge/+7//9nf
8E7rUhoSd7L85PldEdrvKp6xZYRDhEufZmC1ImC55kOKjCQ46j1ZIH5FESLd
nnRRGDfAW/+Hkq6FIkhNK9xY6MoD7qYCZZVrCjDw0uXEXFcpBMqcwh/2ykOW
nELAKYEyKCRF/ABzeXAPHfCeNS2HMypt/frS8tCoHmbHvFwJU/E1J11pclCR
dF1u0v4lWJE0yrLt5MBBa6KP1VUHyVGdDpX2spDv5uJdEloP0T56OZHaskCK
LW0NE3gHTjYGsamrZOFlR9SHGdP/4A7romIFXQZMUkRLpi5/gLLntwZ69sqA
yoRh8rg9HXQ3r5jtPicNC10Wt5hdrXB+gOJ4UlQKqkyFDjzUa4O8yvfq02xJ
iLzM0PeNboOwf/3VHn+RhFm7M7U0tXYoNctu7iiUhIln1T8eBHYAs8K3lOkh
CV/O2tjtZ3dBtxe1fHCfBGT1i4nJbmNAbsIH4c+bJMDbqr+r8TYD9J6WxWiI
SUDHdFyI5eZuoBoaWX97LQ5NPrUZMok9oBz0lteoIw61G+xnGsT7YGqN89cF
QTGIuyhTnXCgD4YLjOPCR1aD9bfhZIvSPtA/M9tnVbcaXmQlK9336AcNjYWG
4rjVUCrwfltC9gB0OcpErlsUhdYQLRdluSEwf+TLcSKJQr39w/yWvGFYP+h/
qNdaGIyvFI3PfxyGE+yrEuZawnCXUWmkNjMMri12U69FheGvkI9Vx7aMQHuR
uo1PrxAYpY/TKe0jYB659mFejBBkTRhwzARG4ZXowJzGh1UQdr14W9aRMTjW
veXH5F+C0N9bdbH28hjEZwsFmwUKwg6dt82jz8cg7tys5r1dgqBT0+KzkW8c
WNoD4+36gtA7MhtCzxgHy7h3cm/7BcDB0uz2csMEiJmcZXvvFACVgRejhwyn
4Izzq8S71vzAxz6Z0bBrCrC2Xf9nQ34YEdR3Mj49BRkRNtNKqvzwzCjr2dLb
KQg0QV6cJQqguChqhtc0HD8oW/6qlgJ+qlvITUkzsOuoW9VJJwq0EP1XsieZ
UHkwc0A/hAzvLKq/u64wQWJtRwLXjwwVtrcxRZoFHilfHRm7yZDl4TIbZMGC
YONttZ8syXAo9rWHRRILxMrcnFMFyDBLv6vSqjALNmvib1nlkUA22O/JKns2
PEuQkqB+5wP9Vf++d/NiQ2JFvop7Lx/gvNGvmcfZkJQ407+1mQ+CGSHKhmls
yBEQ5XlV8sG7rTGpbt/Y0JhbPIbP8wFVNTM0M2UOlt0iK0gEH7Q1tZoa0DlQ
Ord2dIC8gsaC5F2pgxy4QZ2U9ZxeRsv8e4+/muMAIbL28Gj3MtLfMvSvq+pP
6MuoKnAvWUZJD2dkqaE/IWH/QOKhg8vINGH1/EvJeTCh/fFR6f0SumHiUOPi
wQVp42NuzTm/0IZen+02R7lwpWrE1e/aL0RPDmkziObCw+nlcFLCLyTISPsh
lMuFdDFSYbTfLxQdN6xcP8kFkvu1xq3qv1AALSHGInkB9Fbe8knlLSLzwBqb
tc950G67wZLxnIfaxJsbxN/zQNPGmHH6Pg+FVX31WGLwIC2d562TzkNPREVC
e5Z5cL9bJq8oiofUS73vpjktwhOH44NhdjwktMJZFvq6CNMWhMQ/7QuoO8O4
liW5BOW6lxuWyQsoq61AIlJ7Ce4tpl2y43DRXnFdP57VEoSWa35K+85FX86q
LpP9l+BoXwo1gM5Fg6Ei1rLlS5AzlzX67DYXjW0dqTT3WQZn36roToKLuMz0
oujcFeijHNNnBs6jS/nxzeQ1JLxt5uJhlwUOctoUJC23joSHKBdSaNMcJPRu
t4cuQcKpI3Z7do9wUPKwdu8OWxKeswmriGnmoBhN+mhaEAnTdsfY2j/goNAc
xWWdahJOeRLmn+rBQbuySwx3/EnGJxi3xWqq55BC2vCFm3coeL+/+x2DO2yk
aFCezH1AwcW2LCenW2ykVPd3/P5iChb7bCVx4jIbqTH1InTrKXhniUBtYywb
ae8MO1AzRsFnPnmSG33ZaCP/kvnwRn5M+6Ne76sGG7lS5UdMG/lxScEj8s6n
syjF3RG1/hTAIq5nNWo+s5BSWZMSmSSI7U0W43IbWKhQxn3eRFQQi3vdcr5c
x0Kdrb7F19UFcaHdFe2IMhbS2kXV3PWHIHY9oS1/LoOF6pzvCX7OFMTb+abq
cw6y0JIDp+mT9SqslekXcG+eiU5Z5fo1JAlhx8YQ5TQTJto6w4sKHRbBO0T2
iLd3TKFE610HlSzF8P6A6AqDoh9oc2FmWdwbCRxwNy7d48k4CuayEj6KSWHJ
jqagpwJjaMFAsp/wkMZiPmdO1FBHkXXB05zbt2UwmN9/v3fNN8SSdjrgWSeL
mQ3hsxTuMBpJPeAZvkoeX0obNbHo/4ocZ047fjNXwAm2nIsc5hCa9Bc6VRav
iCfELR7xCw0hBy0FckrdGhwaHh8dZTmIpD/pXCmeUcIyhznMQvEBpHK+yM3c
XAW3DZ2dUS7sQxkGVpIyR1Txu+gbh5Tiv6BGJVsz9nU1zA7YTu0+3os2q9Rd
29Cpjh8tfiGEvHqQOCWPejBpLdat4EyKHulGaonq1j46Gjg/98iBISoDCWvv
q9j9QQM7SOtsikrvQkY2a4pO79fEMSbBdes7O1F4v3S9E986rDqREnxNqhPN
sFM9HDPWYUdDTzPzwA60fcP7LEdCC9f3/BPR8l87es3esjjfpIW5dQMvnmm2
o1BD056WQG3c6yPhMnOjDdlMB7T7COtgNVKbQ/pKK9qmpegslqeDN2byG+2N
bUXrEy7+VWehi/Hp7+5C/K1IP9DqjXaPLs5OcC8TTmlBga+PJpedXI9XZ05c
01BsQW9y2gNYcno43zD4W939z2ju0cr8hko9HDQdbje7+TPy1y4QznLWx4lZ
noIVlc2IpX/TvJSpj2Xu2Vx9O9uEqvIXhzjnDXDgN5t8in0T2rt1Hd6iZogl
LEykBu58QsohKS+Mag2xlsZ2SbNZOpITCS5x9iIw1+7CmvvedJRvHxvF9CHw
xdh9ngKedGQae8X+5j4Cxz8eFzm8h45cmMUdjIMErkx53rPehY7+7uQs+AcT
2O7+Takyezri5sXbRSUSWCZD+e2gER31bLnZ9qCAwFc3mrncEKCjoxH52Y6F
BL5ZO7qNRKGjn4XlgZPFBH4TSy0J46MjaU3GvEkFgY2yCobdFmloh5Cqyqta
ArurW5fIs2joZfuDgLYOAuddeNBZ+YWGnMSriEgGgfmL+JeJHhpibG/4qdhL
4KUlv/T8Lhqaq/5x3neQwPWv09VvttIQkWv8bHyCwKuutiRFfPzt9dhGpk4R
WDS233zmv9+e7B7YwCRw8NivP4PqaehwSkQLlUPgX2sXuL6vf3u1f2cpcAks
H5Md1lNDQ0m8dP9qHoEDwr54e76gIclNjw33LxF4qO+fktYKGrobUs1ZWSFw
YuGrKNcyGvofyyb+oA==
"]]},
Annotation[#, "Charting`Private`Tag$7397#1"]& ]}, {}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{
FormBox["\"Va\"", TraditionalForm], 
FormBox["\"Ca\"", TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->{{
Thickness[Large], 
GrayLevel[0]}, {
Thickness[Large], 
GrayLevel[0]}},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"DefaultBoundaryStyle" -> Automatic, 
     "DefaultGraphicsInteraction" -> {
      "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
       "Effects" -> {
        "Highlight" -> {"ratio" -> 2}, 
         "HighlightPoint" -> {"ratio" -> 2}, 
         "Droplines" -> {
          "freeformCursorMode" -> True, 
           "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
     "DefaultMeshStyle" -> AbsolutePointSize[6], 
     "ScalingFunctions" -> None, 
     "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 14.999999693877552`}, {0, 0.000095}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic},
TicksStyle->Directive["Black", 14]]\)

Out[32]= \!\(\*
GraphicsBox[{{{}, {}, 
TagBox[
{RGBColor[1, 0.5, 0], Thickness[0.01], Opacity[1.], 
       LineBox[CompressedData["
1:eJxF13c4V+8bB3AkKZI+HysheyV7r88bHyMiJULJyCxKimS0y0gLFbIrRTIK
GUUIUSGJlNUgSYmMyPid0/d7/b7/nHO9rnOf69zneZ5z7vsRcdu/1YOJgYHB
mjiQZ9GL8zdShar1C6YWFxdXheMhq8w6P+80mpS8VeRJwtXBeTelvfNp69b0
aK/gCEec+uedKy88pMk9/2F+jS0c9YoHvFi8q2jtZ/pXyrKGI4x7sXQxvZb2
fhnlT82ScFyNNdafO99AC1hZe9dtIQz5q2Jqf4c8p9lTvrxb/jsMz2LazCa9
WmjMvqPuZT/D8PM0+5fgnFe0HR3nTAOGwhBemy8znf6atiHWNUOtLwwrmGx8
A6+9oQVrlRUyvwnDVUzl/TrfScs5IPa2vzEMYscSxw6c7qJdusMV//xxGAoe
66r+DHlPa2YPPl1fEIZG7VNlI159NPs/jXwTcWG4q0s9qpbfT/v9MT5O9nQY
xt67px3K+UDTawwaDT4YhqP8rB/H0z/RzofHa3luDsPTMoclysmfaYdubh5Y
rkvk43BX/MC1AdoB6bZvzVJhuHbNymv0/Bfavphr2Q1zoehVT4+UjxqifS4S
+8kwGArxjrFsv9NfaT010XmezaEo4Loy8i3kG01J4FZJbXIomi6/PzDkNUoT
d7+WLagYisiEq41xSj9pDxIiK6jUUMh50xxV8n/S6p7M3bKeDEHAssuhATlj
tGD38Mv3HoZgwVi18mf6L5qvB7V9p2oI+GpDjL6fn6ZlZYgqMaw+gopYsfYY
tt80I+18UeXhYOxye+EuF/WbVvVUTG24Jhg3GYXO7j09Q0sZeLB/PiAYSqh+
9jXkDy3JjVdfovkwzB8vsxr0WqRNVv8YWHsoCEqLbpM8PxdpF5wUaz8YBSFG
2LlZTJcB4JBj8aQG4ZBbeeC2pwxI3BF35XFhIOiD/k+L2xlxYv9UpuLIIXz8
3uMaPLkE06YxefI7D0J4/mHyvDor1CPXzjTR/cGV6vGTO5QVS+c6NmZz+YOV
RqXLV7FCPoPt1onG/Rg9vu/bLtPlMM7YGWjOth+VzBLaT7avwMW1q5qYr/jB
iT2282QwO6TANX786R68XKm+nNmJExlVDDnlWR5os6AkNIdxovvAFLuEiwfe
Rv2QTEzmhOepmTQtfg98XnqbLt/NifmJjKdul9wxN8973H7HapzqtxSuOL0b
sj9mpnIdKKjl3bPu2HlXKMp1nDl8hIJ9h2OexG9xhfqe+1yGiRQ87fNisOFx
heHgHuXOtxR4aIkLNGS4wKH3vR+jPRUG+zvcpo87I7L58WdbOy7w+v0yaNbc
iQvsSQeFg7jAxB27e9ebHYg3D2L6doULHLxfwyQO7kBavbzw8TdcSBwyXWl9
3xEllWk7crZxw43a8eCtvgMG8k60LWzlwdK4/Un3LthheMTJtTGAB1s5RxSu
69nhp6z2z7hYHvwpHZtP/G6LuazxlTJtPDCavsdXbW0LrrTdG2228KK8IzbW
T2wbDC8aP7m9mQ83Te67zU9vwXHzouy2fXzITPqiu6p0CyqXisXNn+dDczCP
MMORLdAOY/C0ecGHEQtju8B5a6j4VLAtmq3Bxvps7T2c1hA3UtpuZ8gPW9XS
jo7STXBbSMMJV36YXpRtTN+6CellHLK5x/nRtOJ0ds93CwgojswxVvHj27yF
Waq0BbgFb2fe01mLu6cNDaryNoJlWuAHs5oAWJ69sHk8YwL6/XOdCtsEsES4
2uXeHROc9Jt94nhQACOZff4v7E2w8KkzrqBQAMUHmjoiHhljujVWa6e8IDTW
Re6NuEyHegyjWISlIGojJZec2kjHIVN/9vu+gki+tZztIhMdPx9b9i27K4jO
DK+OxsNGGMphPfNASgj1s7ucPPcZQtLz8L5eEyFYOEirn5A3hLvI4PblnkJQ
9qnddGnUAP3XamWdbwrhx63J5vBDBug6fbR1hcg6xAhZBGtHAR4KsyuVVgpD
qFdzyXSJHja9j7jFJySMpKeTfubmelCN4NZjUBAGXFd+9+rTBXOfom+LtTDq
1T17P3PoIvOCV5NfvDD6Na82SpzURrT2pKvtLWFELg54sopp48DgyRndEmFU
Prs2erROC9BPlWZ/K4wLHsPeHKu00Pe9/WzOWhHou//Zu6JIA/WJbkKxciKw
T7+s0ueigTzjn8VH9EQQyTEVwLtKA0dT2AbMnEVwtGys7Pp+dQhYGhp9yRTB
Tg+XKw5Qg0Nu/qKYrCgmxaWOCgqoAPZ619h0RLHutkVHbrcypJmfy/+yEMVL
vjdSVqnK+L1j0KnGTxSSoZmfi8SVcZVN8JFLoSjSbjQ8TdRTwtGHOTZmNaLQ
3Lx6L41FCR67Nb8pvBbFaanDgm9aFKFaYcO/OCEK3cWNg088FPF6T3RwiqYY
fFSsN+/SVEA5Dx/nmY1iqM9sqXjdKY/Mmlu3fR3F8II+Yvc9WB4B/NUdOmFi
OPNqestY1QZwNk2rvqsSA7VxauaYixwsZTzGeEzF4R8ePbl+UAaz5wIreuzE
kdT7Z7ooQwZ3fpw5c9NTHOuXr+q23SUD5qKsNcpnxRGXt/j85TtplOsPGVjW
iePm8cyIdf1S8M74zcb1Rhz3n711+HlDCtzMyzvefRbHowtbqx56S8G/UWaP
N7MEln2aa+SflITktr2xp4wkUJ/A++IZnyTaS0J3mttIoOucY9nnTxI4sSZG
cvVuCZS6Pq/typdAd29ueepJCcgwvT1hYC6BOJ8fH8uqJeB2KKghJ1IcDMcO
qPykSeJA4NOtUjJiyPtwYr5ksyRsGJwMbBnEsIMe2xDuLIkrb45sXP9WFCXL
H+xgOyaJ1rui80+jROEbP3FKslISWUzfUj0nRMA/zWz1/aUk6JbnymJaRdDg
wM1X1COJZedW3zG5JwLRdeq5BvOSCNp7LsnXWwRd2Yfbd+pK4b0JI9VgQBhn
2SNTxTZJIVk7tL6uThiq+xO8h3dIodh11/4XWcK4pFo2dzhUCvll4g7b9wjD
pGpWPK5cChfbCqrtfqzD/fbwwEZNaThGt1ht3CSEO2fc3T5ulIZbyZRTOa8Q
UtUtNv9xlIaLXVsHz2dBRCfwyWwIl0bb+m8PTxwTxO6dD7ovVUujLOLkVMET
ATiuTGrMbpNGd8e6SxxxArCuPF5S80kal85urdD0FICusNWliaUyuHw648pn
DgFwfR4ysjeXQepdPw9tn7VYcaVF8cAOGZTY3pBINlgLBpMSwWhfGWjpd6bl
86/FyO1T0xUXZFBvHO/T18yPur1Cd9e9loFL4MBbDho/gn7ZUL7skAWLAb+h
ju4a+N7UXlz0lUWwVy+bq9AauNmKjPAdlYVZEYbYGdfA6uGPOvN0Wfh9op76
3sAHqdCoI3mfZeHR2C0Rt4MPQnL+ng2TshieERPKMeADV4+dTT/LegRLnTmp
Js0HBpr4BorMetwdCQ3ImOLFW6aq/kC/9ZjK+MBzLYEXzQ9uvbxwdD0Sp5ns
+E/y4ql7TPnti+tx/bNjDpMvLwrrHeK7CtejOqLlzB/wIjp6wlRvaj2edZm5
7BrlgQ5FNp/5mBywZufxUzt50Mzo2PjyohwWjESdPlrwwGUs6tPVdDl42Ubl
Ruvw4HTrV16ZGjm0N1Uk3l9LxF/IPm65dAOmqyeT9fq44XK0K4mHZwN6g/rf
1LVyY9xveXGf5AaYe2XMnK/hBq+lz9cDZhuwtX0wtSuLiGeT2Xr13AZ8YSt/
iAAiftbe1zmZuH7zcmiOBzdOD0eelb63AY/0VvdaOHAju3GovLx5AzI8k+4p
GRDxEXfE+lbL43fA/M39VCKeWXpSKkEeZ6Pumf56wgWeie2rxu7I44CP7R3f
h1y48ylCprxMHkW/hsU587jwsuaL06b38piJtD3fdp2IP3G73l9IAVH6MeeU
jhDx/p39WgoKuPytX3zInws6Lsv+MEEBkfwGrrXeXHCheSlccVVApkuW/oA9
F7LnJRPKbipgD9PMmTptLuh+t7t/slgBS4wOC15S4UJz99kXFvUKuNbdFR8i
x4XxikGG3i8KGA/wH88V4oKQ3mvVE9yK4L2/LyGYmQtef2JTbtkronzR4pDu
GyrirUZqj7goIk3aTFyilYonGcbDlt6KkGMUeCv6nAo+s9/qU4cVYfZ7ZGxH
NRXP4p1aTa4pgunmmcaKPComvpRM8acpwlr4mI9RDhXCOpyCo1mKqFySHt5z
i4rgDzU+10oUEVy39LVpChUy8tJLht4o4ur3XNnvMVTYnTgh86hHEQsp23Yw
RFFxsv3d5ksDivhTaPZE7AwV70LOJ2tOKqI344FAUjgV0Q3jalFcShAv0KLo
76fim8tjb1kbJQw3ZbRtsCXyLeK5uOCohCjWfjmprVTQl/kXt7kp4chY7NIN
m6lIvifKFBqgBC+GL+5OG6nYNBtx/fllJXCYMe610CfytfxQnZaoBG3GNMMb
OlTcTNceOpihhK8x+RQWLSrmTL6rChQqYb67+ss3FSruxW1t9m1VQtgKjjQV
WSLfwbsTeEs8/6HLvl4pKli0l67l7ldCyra7fbESVOzqf+j1eFQJ7+49Xs4n
QgXHBkFGjlXKCHHQNb/IR8X++i8q+ZbKiAv5Obh6OTEfyN0rZ0fUyYfzy9Yt
o4Kzwv9G9i5lHPTx+6C6lIqC/BnKzf3KiBfkFg1hpGI8gW084bIyZhT9nnjO
UmBIbZXhSVJGFX/EmeLfFMSdj3eNy1SG60m7HrZpClRPCr46/0AZ+xUkKpt/
UYj/tkLByTfKyF44XpT9nYL6gV9fFnuU4bF5PkRphAJel9J14YPKYBwRflM1
TEHpNoOLh6eV0R4t1zL6hYIZPZt9vmtUoC5nUpP4kYIwzsNydk4qkDfyDlwg
+uQX0Trurz1UEC3kXPGxkwLBpQzJ1vtUsDKIf/p5BwWVM5FsFsdUELIjZDq3
nQKGT0nDtAwVuGw9Up/VSoG1k7Po42wVlAw6uxW0UJDRKeaofV8Fzswzmyqb
ifd9kduoWquCdvqx6sEXFJwqrrwjM6CCrxvZRbwbKWhXONWf9V0F+VdMZWKf
USCeY8onPqUCk1eCo1UNRF+f2hohtEwVeZU//SXrKWCJ/OhJlVFF84mMaMFa
CqIdWSTmfVUx8453MOsxBfqK7FNfD6migcFVjpPw2FJKQ0eYKlbUNA2FPqLA
vlDQpyBGFS7nma47VlAgwap2b3euKjh/2baolFHwtkf7qHWRKkZWPcnPL6Ug
5gE26z1SRaBbROkGwuO7No3xvFAF2y/9dYoPKXhSvFut6ZsqmH58sbQspuDQ
OR+Wh79UYXKjOqyriAIp1/2dN/6owiDt5UUvwhfYQ4+Es6nhyMs5w6gHFOzY
HftYcT3Rt8VuZ/1YSMEUZ7XxtT1qEMyiNX7MoyBnsJ7ndIAaZq4ufR5F2OnR
iy/+IWqIPvkOyoSfer2NMo9Ww3GmcP+IexRcrhx9OZ+thtcz93QMcymgx0+m
DheqwTZXT2viLgW/ff7s7yxTwzuPsbDbhHdxL6MUNqpBZ/P56tWE5XyF7Ny/
qkGf3p0/kU1Bv4G41JYxNfQUKFoVEI7jlf2tN6OG3DfeK/wIz9aoJfEuV8fY
9HDj1zsUPFtj2dskrQ67Is0vo7cp2N0Q6qnkrQ7HE52DslkUuOtKWk0Rfevx
Ykm36VsUeBa2qlUcVofijVsFTwl7X5dYahyhjpTnZWWuhPftb7lhn6UOPu6v
wrduUuD/+cg5wTx1yLxa7DpM+ICD+MGPxergqijYZEH4kNERQ986dTgxr7CZ
uEFBCK/Yh2Of1cGqbR9nRTgs5uUz+og6PEyznkkSDmcMLlg+oY69LpSMxUwK
jn97cSxuiQb0XnUrPiB8tipI6LaoBq4EF54RIRzr1bSjmejLd3N9/cmXQUF8
9yGjOG8NlIh8VZ1Np+DKlnXr7f01sM1ncOo94QSdQ7MfjmlgiqdlJJ1w6iqh
xMlUDaI/6vFRJJx++tnx8iwNzBZyenETzpgJ8D6Wp4GC0/Nts2kU3PzUoLG8
UgNDrhOj9YRzHh7oEOjRwEGPQA53wrlyApUfPmuAwum6ZRPhexn1t7JGNCAd
nTypSrjg3NpAxTkNSBa83LGMcIlzHZW+VhNM65gDC1IpqF62ZsteB03MiRen
UAgP3pA373LVhMFVt0cLKRSwg25kukcT9CpflW+E7YP3q4mFaqKfM1S8jvDo
UN2a98maGPik9DWMMNeZ95SNtzRxY9Q4Yy9hbZExtof3NBGlKJPlSPisg8BC
bKUm1uasvKxFWLAp4KN5vyY0BL0aZpOJ/4Vn5PvSIU2YX/5Y/Y2wN1Nqu+SY
Jux2iy52Ey7SbqxnYtKCpt4WvSeELe6uu1supoX+terZUYSPxLw4KOulBQ5G
KVspwqnSH30T9mthfG3Qn7WEnz6d9mAJ1kKLlWY7J2HOeVH7j5Fa8P2ZsObP
dQpu+x3RTcrRAg9VvfsV4RfLL6qxPtAC/wPfhQbC47duygdVEPd3hm+qJKzf
2yK89YUWGjykfO4SfmMluXTFDy2MvuK9FEF4dlhn4fCUFu46RM8dJSwcsWV6
YEELg9fWXgwi7FsV9rV6lTZ++k6LeRJeovj65RElbVx8XTNrQlhp9fGrXw9p
I/8VVycH4XLWTumGMG2cGtRoYiVsyCBfcfO0Nqa9gjqYCG8bfd/nHK+NNelZ
mtNJRP14qSHT8UAbG4918n0gvPj0QsWDCm3kur5sfE848tGA5eVabcxPN13q
IJx4Ny5g02tt8HMccH5B+FHUaEXNuDZ0peomSwkbnzCxSp/VBlXP3LKIcHNw
Sn84kw5s34qV5hPu87JYqkXRgdqqK/VZhJlMblvlK+nggOrs4yuEzZicP1z3
18HnIJHOIMKvZooPHgnWQTGd1eAgYccxdpbtx3WwZaa1bD/hvf3lspRLOnDh
oHR6E75QyXMoMl8Hcm9aynYQ5i3xY/F8qAPnGJ14e8Lp954mGFXpIFu3JNSW
cGFywOOFZh0I3mY4sJlwe0gzS+APHej3K48aEXYKkEjcOqUDJ2MHOQPCgz5h
6xUXdHBkdOKQPuFpe1nrbyt14ZbVLKVFmF/jbKLrBl0sE2FdpUDY5ZeenJWv
LkzU2x8LEF5JYWhtP6SL0MBt/vyEyxVrDu4I1wX9ivwGPsJc+0wqvC/o4pKM
Rh2V8LMhK/NTBbroOlrsw0Y4cNnqH8vLdFF5n3/PcsKikq8vX6rWBUtm6MFl
hMN2b+9KadPFwIeL6UsIK/Y6e5dO6GJItdZ5LpGCnjkRdtq8Loz9a27MEo5e
+zm/bqkepM6eH/1N+LO993Qbjx5OFPxJmSSc8Nr/7HdNPQgNRG4dJczQeOKm
aLgeqmWbFz4RvvfFyCz7jB4sHHYXfCTsyMIyonBBD+uedXp9IFxkFK2il6YH
drPJL72EvStja7ZX6yEpVFf2HWHunm2evY16cJtjZO0iXPOHZ4VHmx441vYP
dxIW0Lq+JeCTHuyno6veEG59cKM/Zqk+Su4rZ74iHN7mcZrKoQ+vJ1uyWgnL
jklJJ/Hoo4G1J6+F8Gn53P23pfTRJfD1xUvCmtlFC9Ub9XHP6ol2E+GM1DqB
6fP6OCBe+7KWcPJOuU7bq/oQ2RJOJZ3AH3e5KFUfIZl+O2sIX7jqwhKQrw9+
Wun0E8IhF/6MjrTqQ+/24a2VhAM3ueVYdOmjJ3R3wWPC/isa3XM+6ONULv9q
0p5nr3Z5jevjB1P5uwrCW48q1X6k0vDa2f98GWFL3YRwAwEajnr6MJA2m13Q
SBenQaqvNbCUsH7Qi1wnNRqeez/xekh4/T6vq2/taMS+gsGrmDDzrhSf5kQa
VN9cbCokvLiWWXxDJg0P9JucSc927ek9l0OD3Nf3UwWEf9pq2mysoGHNLXdZ
0t2Wr3WfdtMg8k0xK49wJ5v2tOgADRbnNm4k3daYXnjiOw1LNea+3yP8zHif
JG2BBqUoqi7pd6nMrD2rgKlii+G7hN/Oa3iwcwFR+wITSb/ZubdGhw8I/bnE
nHQrf1tYkjBQ0qqen0O4/mra2HYlIMTRKiqb8IML2u/btgJ1insO3ybsdp1j
abkdQO+21CdNufNRPsMR2FwlwELavzr65H43IIbPLyGLsNzEOxn2AIB3+EDD
LcLvGfJtfgUC3x6YXSEdvfJU+LsjQBP3j92khyTXv7pzAmjZfW0J6ZsOocHG
l4Fje1ZsuknYxnNzptwVwP71n3WkmQ6KvaAmAh4FmRM3CLvEPF/3MR14KrE0
nbRA1dqGowVAK/G9ZBKOF3/EXdoCbB8SepdB2EjpEi3tNTCrJ1pKelzP3eds
J7DtQuFV0tbb2R9v6wOcJPfakmaP3uk+9gPQ8ljZlU644qrihbfjANcxlQrS
e24wl1ZNAYvR7Smknz3KZbuwANy/dsyd9OnRufuyHAYwFqBPpxFWmWvtXk0x
wFkx9h7SH1lvscxwG6BNErWkIWrp2CBogFK1gUuk57alMLpvMIBKzIQi6UPl
etYpmwyQ1lh/MpVwsWMDU5e1AZ6Xv/MlPTVrXcxlawDzSOvtpI/ouPPHOBkg
aMRxA+mjj6I/h+wzgO7wo54UwlU7ua6VBBgg7lphE2mG+ZSN40EG8Df785D0
Sb3CPJ9jBnB4GRFHOqKyM9j+kgG2hTlZkX62y3V9fLwB9si36ZFesTjc05Jg
gJnySxtIx9AWDE0zDHDGcHAl6UtPxFeq3zfAO5fWV8mEk2oOZFDbDZDPkeJB
+r3bH5vNbw1wv0bYgbTAkjMs57oNwKrSvYl0qlHCXqYBA7z0mVIlfeNppdrY
pAGsWFKXkf7sbjYkN2sAwW11c9cJSy5tS/JeMIDESsFx0neMBxb7WAzB6e7Y
Qzq3nq2pmdcQEt8mi0l/97wStkLAEHgclUtaftk6BRNhQzilmd4gXWiqHP9Y
2hBvbutfJl3yzH5XrpYhrNhY9pOuaro1HrXDEGckPJVI3+drPRDubAhu5hpZ
0jc9Z3/67zbExVgtcdLRTJtHt+81xJ5fR3hJb9P+/U0i1BBBiSqLSYRNI0X3
rjlmiJBKlxnS2h2bhtlPGeK7bNYv0usCMoZ+RRtiyCR4iPRwtvlAdZIhdvbJ
vybdPX3IvTjVEFKR1GbSLcZpn+5kEvmGrmwkXfTh14eLOYag9tGqSB9bk9Lr
VG6ISVzJJc0VNdo502WI6sWKaNIsnWu2f+8xhMaD5rOkZ8TpHf0fDNFSN3aS
dO+ThPaGr4YI/+0VSjr7t8GrKzOGqHBd6Uc62cTXOmreEGLt131IX4i/2hLG
aIT6DE1P0ocUv73cvdwIli7JzqT1veOblNYYYeVaFhvSSiWVGyUEjfCdk9Ga
tDjz12d8IkbITGG1JL08Xa9hUdoIQTm6pqTbOwdrX2oawXS5ii5pH1Otxz72
RuBRV5Am/UN6TV3hTiMYR96VIB2wYubFjIsRDFVVxEiHvSztjvIxwtWXu4VI
X7LRnMsOMcJoJp2bNLcaH/P4USNscuShkk7i+c2mfcoIk1/HOEnf6Hq4tumc
EZQ+1LGTLnHW0BlONkLIqW5m0joGvEbKGUaotvjNRPqJ6LR5yC0jTKcIMJJu
HChxXJFnhPsmR+cTyfncqx4iW2UE9eSMKdJMwWplez4YwYnBfJh0hAN39f0B
IxQ97hkiza4z+Wz2qxEOfjn8hTT3QtHb6HEj5LFXfSYtfVr1d84SOvouX+kj
fc+Di+HXMjqiMh16SSubTizTYafjoLFYD2ndFUW8z7noeNdT/4705ksqGt8k
6DAt2tRBuv0AlaYiS8dinvYb0vY2v0xC5emoPLqhnbQbzwM7Ng06gkxE2kgH
JSsHrTejo3M9rZl08h2l4r176JgSNWog/axr97O0fXScKA2uJz2x4ur71wF0
2LYU1pG28Jtl1A2lY9ZQ/inpWaVaK/YYOjrSrKpJS+6edMUlOlyvpz4hvTVe
KvBQPJ3Y345Vkc6ZOne9O5mOpoz0StIOFduGcu/RIT0q/Ij06ZGzf/oL6dje
F1FBukCwjIO7hI5lQWPlpFmPC6qFV9Ih6v2ijHQpffCEZQsdX0TTH5LmaT68
9sdPOurzih+Q3qfYbWA3Q4eqaut90vWxRIvGaIzIpPFC0oHblxdfoBiDPm1Z
QPpFmd/7KX5j6O05m09aXKCN0VnMGJSHdXl/x7s/yUpB1ZioM9vvkZYzWjx0
TdcYHd45uaRP3dp9fZFuDNNOpr9W3iM31GJrjMHapzmkL/96fML/sDFaLkbc
Ic2yfzmjcIQx3rhevU06bHjb8ZarxmDwLcoiPeaRvng0yxgHS/tvkfb88O2o
fAkR78L/1907NRZ66oyx/bzLTdJb3p4MP//GGM8O3r/xd/20rAkbmTBG/umg
zL/zU18QYsFlAnYV1wzSqx+bHslRMUFqvV866bkHvYeX25jgNX9CGunBnMAg
7wATlMV0p/5dT/pl5XvjTXCLaf1f976aW9hXYgKTvksppB09YBTw1gR/2Nn+
+s3vUxGBsybQ7L2a/Hd817FxhumbgtHv3XXST01iE06eNEW/26a//mheohfF
aIatnElJpBk3v/t48bgZmvsV/5rBzGycd94MNrW/Ev/aoIQx/chGHLVr+Wt6
bodUGYM54lD615G805ZtEeaI5r7713OaG1gHllrAkOhmSPs77q6ZPmUBm4q0
v5b+YRF3nX0TDKkpf/3hhKo77comvCaqD+mQFV5p7mst4Vie9NdccYnvojIs
MaX/j3tefci+I2SF4T+Jf53FKXuk4boVONr/cVG1uPNhsc3oKf/H1QHrjKXu
bkZE7j9eHLnmPMRljWc3/3GqcLqA3jZrqKX/4zyrlxe2xlrjXMo/fhw2y+Dd
ao2J6/949NPxhTrqFown/WMRi2VzYtu3wPlf7zmfULtwZQtW/euiFplzXe1b
0Jf4j4UtuHrn+Lai+l/H1C8oCjttRcG/5hScsHySvBW3/3Xcwa97XLq3IvNf
Rz5dolfNb4O0fx3GLbRK1MEGKf86Nu2y7/NkGyT/62yZpU2H+m1w/V+/vXBq
LGndtv+bZYJxTfWubUj613axXc8Vbvzn24qFR1O//GcZtxyreT/b//v9xrL7
tt/+c9uNkA20g3b/9+8HW3RFx//zYmlA8dl92/9vC0UT47DJ/9zgpOCz96D9
/629zLqguOw/5xX4Ty8u/uf/AfMrcao=
"]]},
Annotation[#, "Charting`Private`Tag$7460#1"]& ]}, {}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{
FormBox["\"Ia\"", TraditionalForm], 
FormBox["\"La1\"", TraditionalForm]},
AxesOrigin->{0, 0},
AxesStyle->{{
Thickness[Large], 
GrayLevel[0]}, {
Thickness[Large], 
GrayLevel[0]}},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{"DefaultBoundaryStyle" -> Automatic, 
     "DefaultGraphicsInteraction" -> {
      "Version" -> 1.2, "TrackMousePosition" -> {True, False}, 
       "Effects" -> {
        "Highlight" -> {"ratio" -> 2}, 
         "HighlightPoint" -> {"ratio" -> 2}, 
         "Droplines" -> {
          "freeformCursorMode" -> True, 
           "placement" -> {"x" -> "All", "y" -> "None"}}}}, 
     "DefaultMeshStyle" -> AbsolutePointSize[6], 
     "ScalingFunctions" -> None, 
     "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]], 
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 99.99999795918367}, {0, 558.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic},
TicksStyle->Directive["Black", 14]]\)

Out[53]= \!\(\*
GraphicsBox[{{}, {{}, {}, 
{RGBColor[0, 1, 1], PointSize[0.009166666666666668], Thickness[0.008],
       LineBox[CompressedData["
1:eJxdk3lQU1cYxRFQK1grZREREQEBBcOu7JywhB1CgISELQmKU1vFdZQKTsQO
1hXqhCoRGXZ3HRHRKktEoVY0VQQUixqooOJYkdoOVJTa5t4/eG8mkzn55bzv
nne+t1CaxVupraWlpfj0+e9bcw0HaE2+MFl+hoaxEfZplbVSo2cj8/9rsFmj
jTDx1L3tdkAg4aYMbo5gr8YrOqWxhFsyuBWGk/IOh2cmEm7D4LZAUV2RzFBE
uD2DL4HJ4ID2H+OphDsyOIuRx5mhXWBosHxZPCeM/N8VF1OMB/dFDxDtBvdN
DlPV0gii3WE183z5zTn0/h6YzanakWEfSfQyzOp81WHHpnw58s4oWtsKKfeE
IsdCnc2l3Av6Tg9V8zoo98bbtbcs7ggo90H94wUbDk5Q7ouCUPd5ymTK/Rh5
/Bk6AAM7h5dy3ILI/4H07PpD/Jm/a7QMqLb2dNApCCWcjcRchT5rM8kvY6M3
s0Rvv1044YGIcVTlGr+jPBAOiqgp1Vr0+QSBVcAv5FiR88mCYFRUuv2bAsqD
8dG8QfjIg/JgVP6aLnfTpflC8MZ7hU+DL+UhjDycyVrGQcy70Xy7ZX7EHwr0
zRh6KH9K/KGwPNFZJRkLJjwMvScUD6zznxEehlWBRq1hCTR/OPSjnUpuyGi+
cOhMby+LP0X3IwIthlWhefcoj4Da/ouLq3+mzycS803el/e8pDwSRp2Gr1t+
ofmjYBa50i5qgvIoRr5oRr5ojF/X5t+qcyf+GIj1C930Nj4g/hgIsp+0f/V9
IOGx6CgaGx+Oof3Goks7d4vruRDCuajR0va80UPyg4udwyZLrHpIfhkXLAvF
h7Wh5HxKLp6vv7Jl/0qaLw4RZSUNTRWEIw52B+Q25cOEy+LA62+fWPWW+uMY
+XiTNXgoObrdddP4YuLnwb8noZTtcIf4eQiYc2pusDvI/HhwTo6KLqv6yPx4
NHJyki6tJv3K4rHuqB/b4BnJr4yHwqhm9TYj2m8CvPtfhrK7af4E7Lu/YE/G
BM2fgA8jV2s4ufT8CbBxO1K7ezPtPxGC+ePcqC6aP5HRF0MrEzH0vshp9IgZ
8fORdVRes2fXVeLnw3mdR12pvi+Zz8d56/Fdgudkf5V8TNdx9nBIpu+vAMEV
ZY1F6n7iFyC9sHh3xEHSr0wA9sCREtZWkk8pgLZFyFifgkP8SXBZOPeVJIKe
PwlZTUJ+oCHNn4Rizj+ytms0fxKjPyGjPyFGbPPGDnnrEr8QvSXXzHJMKohf
CNe+S7ZCV08yX4Sm48HN+ZzfyHwR6kdLZrU9YBO/CMu9KgSVH0m/ShGa7y5+
IjSm728y/j7ZL7lgQPtLxv1KXqRqFs2fjEU9ez3zzen5P+k9AfaqArr/KdBq
clx89hjNn8Loj6GVKahtkXYd2D/QpPkhFZwdLaOBLBnxp8Iz78/oKzfJ+ylL
xQwfieiEWTeZn4re4p8MfFl0f9NgulNusfBzur9pcPQ77WSzmby/sjT4VNV2
Rp2k+5sG20crto58R/tPR/Uu2Y/VQzR/Oi6Lwot7den+p6PrzdL1vAKaP53R
n3iythRjq1WDUf0xpSYfxPjWNLl/RX6sxi8WI1y+d7aniwu5vxgGqtdnbHTv
aXSZGG+mnb6dNkj2VymGnnHOulpTtUarxcjs3hg0tZPml+BGr9urFH+Sz1KC
PnnN1+5DpH9IUNBU1yW/SPKJJfhSdXiNeTZ9PhJsW1SX1bGR5CuTMPpiaLUE
TdentIx3Hif9SfHsrMggc+CvBs18KW5FDfcVq5aQ+VI8PrXB4MLUskbNfCki
go61nk32IvOl4LQ2X6qb3qrhZVKUsysVQ1x/kl8KsY/hNeeEbg1XS5GzRq3S
4dL8Gbi7pnepbnufhltm4IUs6dzjAcKRgR+m6bESW180/gtg17GA
"]]}}, {{}, {}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(kV)\"", TraditionalForm], None}, {
FormBox["\"Time(ns)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{Automatic, 255.03085616446162`},
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 154.}, {-119.95202705813458`, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {
Scaled[0.05], 
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)

Out[54]= \!\(\*
GraphicsBox[{{{}, {{}, {}, 
{RGBColor[0, 0, 1], PointSize[0.007333333333333334], Thickness[0.008],
        LineBox[CompressedData["
1:eJxd10uMXXUBx/Hpu50+5v1oO525M+MCF7hxKxx3mqgL2IldmYhRF+JOYCvB
HS6Mr4UbQOOmiQlGTAz3aMFXgAAFBivUmelr2k7bed15FRh7zveX841zFpx8
Kb33nN/nPwUmv/n9R7+1t6ur6+v3/1Ldd19PD5770txTPyrG6+tcm/5p+pX2
y+PP3Hrk5V8XP/9Zdf0tv/5Cfv3N9q9+WV2/Ky68U1/558/ln3+/vfhI9Xd+
X3zjseq6mN//Un7/pXb3zPNPPNT9x2J5qbpm83l/yufNtz979rm/dh74c/GH
l6rrSj7/lXz+tfYL93/3zPNl8eQPq2sh3/eXfN/N9ufr63zx0BeqazHf/2q+
/077fOeB+9/wWsEaS3mev+d5ltqP1l/4j2J+rrqW83z/zPOttOeeqj7wX8Wr
56trNc/7ep53rf2D6vGeeKP47YvV1cnzv5nnX2/zvW8VP362ujbyPm/lfTbb
X66/4O3ie9+prq2839t5v+129W1nn3un+OpXqute3vdC3vfjdv06MxeKzz1Y
XZ/k/d/N+3/anqgeZ/y9orenunayx3vZo6v89uPV9X6ep6tkn5ns01VWnzZ4
bqb4bv18e0r2+iB77SnXq4/rfJDn3Vuy37+z397y4foDL+b595XseTF77ivr
x3vmP3mf/SX7fph995dvvF5dHxb16z14oGTvj7L3gXKofsBLxUT9vgdL9r+U
/Q+W9ced/W9Rv37PoZLXno3HobzPbPY4XOIzmz0O5/1ms8fhEq+5eB3J+85l
jyMlfnPZozvvP1+8W+/RXeI5nz2OZo/57HG0xPdy9jiWfS5nj2MlPJfjfTx7
XSl+U+9xvMT/SvxPZL8rxS/qPU6UnIerOQ892fNq9ugpOR9Xs0dv9r2W5+nN
ebmWfXqz97U8X2/Oz/Xs1Zv9r8evL+fpes5TXzwW8vx98VjInn3xWMj79Mdj
Ifv2x+NGvPvjcSPnrz8eN+I/EI+b2X+g/EntcTPvPxCPm/EYiMet7DEYj1vZ
YzAet7LHYDwWs8dgPBaLlXqPwXgsZo+heNzOHkPxuJ3zPRSP29ljKB53ct6H
43GnqOd4bDged7LHcDzuZo/heNzNHiPxuJs9RuKxlD1G8j5L2WMkPkvZYzTv
t1Q8XO8xGq+l7DGa913KHqPxW8r5GM37L+c8n4zncn6+TmaP5ZyPk/Fdzh4n
s89y0ar3OBXv5ZyPU9lrJef/VPxX8vN4KvutFH31Hqfz87mSPU5nz5WinuPZ
0zkfK9njdPZdzR5jOS+rOR9j2Xs1e4zl/Kxmj7Hsv5o9xnKeVrPHmXisZY8z
8VjLHmfisZY9zsRjLT8v4/FYyx7j8VjLHuPxWMv5GI9HJ38+TMSjU3yt3mMi
Hp2cj4l4dIrX6j0m4tHJHq14dHJeW/FYzz6teKzn+VrxWM9erXis5zy34rGe
/VrxWM/zt+KxkT1b8djIeZ+Mx0Z+/ibjsRHvyXhs5OdxMh4b8Z+Mx2b2n4zH
Zt5/Mh6b8ZiMx2b2mIrHZnym4rGZPabisZk9puKxlT2m4rGVPabisZU9puKx
lT2m4rGVP3+m4rGVPabjsZ3zNh2P7ewxHY/tnL/p/Hm5Hf/peGwX9RwvTsdj
Oz8f0/G4lz2m43Eve3wmHjYeNh42Hjb3j5vGw8bDxsPGw8bDxsPG45Om8bDx
sPGw8bDxsPH4tGk8bDxsPGw8bDxsPHaaxmNnl8fOLo+dXR47uzx2dnl0ffH/
38fGx+b9bLzs+nUft/Gz+fPBxtNmDxtfm31svG322tM0/jb72ZwHmz1tzofN
vjbnxWZvm/Njs7/NebK5720aDxsPGw8bD5vzZ+Nh42HjYeNh42HjYeNh47Gv
aTxsPGw8bDxsPGw8bDxsPGw8bDxsPGzu+5vGw8bDxsPGw8bDxsPGw8bDxsPG
w8bDxsPG40DTeNh42HjYeNh42HjYeNh42HjYeNh42NwPNo2HjYeNh42HjYeN
h42HjYeNh42HjYeNh43HoabxsPGw8bDxsPGw8bDxsPGw8bDxsPGwuR9uGg8b
DxsPGw8bDxsPm39/2njYeNh42HjYeNh4HGkaDxsPGw8bDxsPGw8bDxsPGw8b
DxsPm3t303jYeNh42HjYeNh42HjYeNh42HjYeNh42Dze0abxsPGw8bDxsPGw
8bDxsPGw8bDxsPGwuR9rGg8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPG4/jTeNh
42HjYeNh42HjYeNh42HjYeNh42FzP9E0HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42Hj1N42HjYeNh42HjYeNh42HjYeNh42HjYXPv3fU+Nj4272fjZfO+Nn42
72/jabOHzf/P2Oxj422zl81/P9jsZ3MebPa0OR82+9qcF5u9bc6Pzf4258nm
3tc0HjYeNh42HjYeNh42HjYeNh42P282HjYeNh42HjYeNh42HjYeNh42HjYe
Nh42HjYeNvf+pvGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDx
sPGw8bDxsPGw8bDxsLkPNI2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeN
h42HjYeNh42HjYeNh42HjYeNh819sGk8bDxsPGw8bDxsPGw8bDxsPGw8bDxs
PGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGzuQ03jYeNh42HjYeNh42HjYeNh
42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42FzH24aDxsPGw8bDxsP
Gw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw8bDxsPGw+b+0jTeNh4
2HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjYeNh42HjY
3Eeb/h9mER2X
"]]}}, {{}, {}}}, {{}, {{}, {}, 
{RGBColor[0, 1, 1], PointSize[0.009166666666666668], Thickness[0.008],
        LineBox[CompressedData["
1:eJxdk3lQU1cYxRFQK1grZREREQEBBcOu7JywhB1CgISELQmKU1vFdZQKTsQO
1hXqhCoRGXZ3HRHRKktEoVY0VQQUixqooOJYkdoOVJTa5t4/eG8mkzn55bzv
nne+t1CaxVupraWlpfj0+e9bcw0HaE2+MFl+hoaxEfZplbVSo2cj8/9rsFmj
jTDx1L3tdkAg4aYMbo5gr8YrOqWxhFsyuBWGk/IOh2cmEm7D4LZAUV2RzFBE
uD2DL4HJ4ID2H+OphDsyOIuRx5mhXWBosHxZPCeM/N8VF1OMB/dFDxDtBvdN
DlPV0gii3WE183z5zTn0/h6YzanakWEfSfQyzOp81WHHpnw58s4oWtsKKfeE
IsdCnc2l3Av6Tg9V8zoo98bbtbcs7ggo90H94wUbDk5Q7ouCUPd5ymTK/Rh5
/Bk6AAM7h5dy3ILI/4H07PpD/Jm/a7QMqLb2dNApCCWcjcRchT5rM8kvY6M3
s0Rvv1044YGIcVTlGr+jPBAOiqgp1Vr0+QSBVcAv5FiR88mCYFRUuv2bAsqD
8dG8QfjIg/JgVP6aLnfTpflC8MZ7hU+DL+UhjDycyVrGQcy70Xy7ZX7EHwr0
zRh6KH9K/KGwPNFZJRkLJjwMvScUD6zznxEehlWBRq1hCTR/OPSjnUpuyGi+
cOhMby+LP0X3IwIthlWhefcoj4Da/ouLq3+mzycS803el/e8pDwSRp2Gr1t+
ofmjYBa50i5qgvIoRr5oRr5ojF/X5t+qcyf+GIj1C930Nj4g/hgIsp+0f/V9
IOGx6CgaGx+Oof3Goks7d4vruRDCuajR0va80UPyg4udwyZLrHpIfhkXLAvF
h7Wh5HxKLp6vv7Jl/0qaLw4RZSUNTRWEIw52B+Q25cOEy+LA62+fWPWW+uMY
+XiTNXgoObrdddP4YuLnwb8noZTtcIf4eQiYc2pusDvI/HhwTo6KLqv6yPx4
NHJyki6tJv3K4rHuqB/b4BnJr4yHwqhm9TYj2m8CvPtfhrK7af4E7Lu/YE/G
BM2fgA8jV2s4ufT8CbBxO1K7ezPtPxGC+ePcqC6aP5HRF0MrEzH0vshp9IgZ
8fORdVRes2fXVeLnw3mdR12pvi+Zz8d56/Fdgudkf5V8TNdx9nBIpu+vAMEV
ZY1F6n7iFyC9sHh3xEHSr0wA9sCREtZWkk8pgLZFyFifgkP8SXBZOPeVJIKe
PwlZTUJ+oCHNn4Rizj+ytms0fxKjPyGjPyFGbPPGDnnrEr8QvSXXzHJMKohf
CNe+S7ZCV08yX4Sm48HN+ZzfyHwR6kdLZrU9YBO/CMu9KgSVH0m/ShGa7y5+
IjSm728y/j7ZL7lgQPtLxv1KXqRqFs2fjEU9ez3zzen5P+k9AfaqArr/KdBq
clx89hjNn8Loj6GVKahtkXYd2D/QpPkhFZwdLaOBLBnxp8Iz78/oKzfJ+ylL
xQwfieiEWTeZn4re4p8MfFl0f9NgulNusfBzur9pcPQ77WSzmby/sjT4VNV2
Rp2k+5sG20crto58R/tPR/Uu2Y/VQzR/Oi6Lwot7den+p6PrzdL1vAKaP53R
n3iythRjq1WDUf0xpSYfxPjWNLl/RX6sxi8WI1y+d7aniwu5vxgGqtdnbHTv
aXSZGG+mnb6dNkj2VymGnnHOulpTtUarxcjs3hg0tZPml+BGr9urFH+Sz1KC
PnnN1+5DpH9IUNBU1yW/SPKJJfhSdXiNeTZ9PhJsW1SX1bGR5CuTMPpiaLUE
TdentIx3Hif9SfHsrMggc+CvBs18KW5FDfcVq5aQ+VI8PrXB4MLUskbNfCki
go61nk32IvOl4LQ2X6qb3qrhZVKUsysVQ1x/kl8KsY/hNeeEbg1XS5GzRq3S
4dL8Gbi7pnepbnufhltm4IUs6dzjAcKRgR+m6bESW180/gtg17GA
"]]}}, {{}, {}}}},
AspectRatio->0.6180339887498948,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Voltage(kV)\"", TraditionalForm], None}, {
FormBox["\"Time(ns)\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{Automatic, Automatic},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
LabelStyle->Directive[
GrayLevel[0], 17],
Method->{"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
      "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]], 
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 6.}, {-10., 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02], 
Scaled[0.02]}, {
Scaled[0.05], 
Scaled[0.02]}},
Ticks->{Automatic, Automatic}]\)

Thanks, Frank.....

Hi,

Ah - try this modification:

VoltFim = Plot[outiv, {t, 0, 6},

and eliminate from that expression the option `Joined -> True, then in your final

Show[...]

add the option PlotRange->All

You are plotting both the voltages and currents, even though your y-axis label indicates volts (!) Resulting Show[] plot

`

POSTED BY: Frank Iannarilli
ClearAll["Global '*"];
NN = 11;

tmax = 6.0;

fN = 1.0;
Rs = 50.0;
Rescimpair = Table[Rc[k] = 0.0, {k, 1, NN, 2}];
Rescpair = Table[Rc[k] = 0.0, {k, 2, NN, 2}];
Rc[NN] = 1100.0;
Reslimpair = Table[Rl[k] = 0.0, {k, 1, NN, 2}];
Reslpair = Table[Rl[k] = 0.0, {k, 2, NN, 2}];
Rl[NN] = 200.0;
t0 = 0.0; ts = 1.7 + t0; tflat = 300.0; tfall = 1.7; tc = ts + tflat;
td = tc + tfall; a0 = -10.0*10^3; {ts, tflat, tfall, td - tc}
Vs[t_] := Which[t <= t0, 0, t > t0  && t <= ts, a0 *(t - t0)/ts - t0,
  t > ts && t <= tc, a0, t > t0 && t <= td, a0*((-t + td)/(td - tc)), 
  t > td, 0]
TabVs = Table[{t, Vs[t]/1000}, {t, 0, tmax, 0.01}];
VoltVs = ListPlot[TabVs, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]

np = 256; tfourier = 1000;
pulse = Table[Vs[t]/1000, {t, 0, tfourier, 0.05}];
datafin = Table[{f/(1.2), Abs[Fourier[pulse]][[f]]}, {f, 1, 60, 1}];
pVs = ListPlot[datafin, PlotRange -> {{0, 50}, All}, 
  PlotStyle -> {AbsoluteThickness[1.8], RGBColor[0, 1, 0], 
    Thickness[0.008]}, FrameLabel -> {"Frequence(Mhz)", "Voltage(V)"},
   Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
NIntegrate[Vs[t]/1000, {t, 0, 200}]
(*non linear capacitor*)
m = 1.08; V0 = 0.7; Cs0 = 0.000095;
p = (1.0 + 1*V[k][t]/V0)^m
Cv[k_][t_] := which[V[k][t] > -V0, Cs0/p, V[k][t] <= -V0, 10.0]
Cv[k_][t_] := Cs0/p
Ca[Va_] := Cs0/(1.0 + 1*Va/V0)^m 
Cv[NN][t] := 10000000.0;
Plot[{Ca[Va]}, {Va, 0, 15}, AxesLabel -> {"Va", "Ca"}, 
 PlotRange -> {0, Cs0}, PlotStyle -> {Thickness[.01], Red}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
(*non linear inductance*)
L0 = 465; La = 4.65; Is = 3.76;
Ls[k_][t_] := (L0 - La)*(Sech[i[k][t]/Is]^2) + La
La1[Ia_] := (L0 - La)*(Sech[(Ia/Is)]^2) + La
Plot[{La1[Ia]}, {Ia, 0, 100}, AxesLabel -> {"Ia", "La1"}, 
 PlotRange -> {0, L0*1.2}, PlotStyle -> {Thickness[.01], Orange}, 
 TicksStyle -> Directive["Black", 14], 
 AxesStyle -> {{Thick, Black}, {Thick, Black}}, 
 AxesLabel -> {Style["t", Black, Italic, 30], 
   Style["x,Vin", Black, Italic, 30]}, Frame -> False, 
 PlotRange -> All]
Ls[NN][t] := 1.0*10^-8
Ls[k_][t_] := 280.0
(*Equation for the First Section*)
eqi = Table[{-i[k]'[t] + 
      Vs[t]/Ls[k][t] - (Rs/Ls[k][t])*
       i[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 1, 1}];

(*Equation for the intermediate Section*)
eqs = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t]) *(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] - i[k + 1][t]) - (V[k][
         t])/Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t] - i[k + 1][t])/Cv[k][t] == 0}, {k, 2, 
    NN - 1}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
(*Equation for the finale Section*)
eqf = Table[{-i[k]'[
        t] + (Rc[k - 1]/Ls[k][t] )*(i[k - 1][t] - 
         i[k][t]) + (V[k - 1][t])/
       Ls[k][t] - (Rc[k]/Ls[k][t] )*(i[k][t] ) - (V[k][t])/
       Ls[k][t] - (Rl[k]/Ls[k][t] )*(i[k][t]) == 
     0, -V[k]'[t] + (i[k][t])/Cv[k][t] == 0}, {k, NN, NN}];
eqpartial = Join[eqi, eqs, eqf];
eqfinal = Flatten[eqpartial];
initial1 = Flatten[Table[{i[k][0] == 0., V[k][0] == 0.}, {k, 1, NN}]];
Vlist = Flatten[Table[{V[k][t], i[k][t]}, {k, 1, NN}]];
sol = NDSolve[Join[eqfinal, initial1], Vlist, {t, 0., tmax}, 
   MaxSteps -> Infinity];
sol1 = Flatten[sol];
inputiv = 
  Table[{i[k][t] = i[k][t] /. sol1, V[k][t] = V[k][t] /. sol1}, {k, 1,
     NN}];
outiv = Flatten[inputiv];
V[0][t_] := Vs[t] - Rs*i[1][t];
Vfp = Table[
   V[k][t_] = Rc[k]*(i[k][t] - i[k + 1][t]) + V[k][t], {k, 1, NN - 1}];
V[NN][t_] := Rc[NN]*(i[NN][t]) + V[NN][t]
Pload[t_] := V[NN][t] i[NN][t]
Pint[t_] := Vs[t] i[1][t]
VoltFim = 
 ListPlot[outiv, PlotRange -> All, 
  PlotStyle -> {AbsoluteThickness[1.4], RGBColor[0, 0, 1], 
    Thickness[0.008]}, FrameLabel -> {"Time(ns)", "Voltage(kV)"}, 
  Joined -> True, GridLines -> {Automatic, Automatic}, 
  FrameTicks -> {Automatic, Automatic}, Frame -> True, 
  LabelStyle -> Directive[Black, 17]]
Show[VoltVs, VoltFim]

the plot is empty, please i need help

Hi Frank... Please show your graph.

Posted 3 years ago

In the WL underscore is interpreted as Blank, so Resl_pair is not a symbol with that name.

Resl_pair // FullForm
(* Pattern[Resl, Blank[pair]] *)

Don't use _ in symbol names.

POSTED BY: Rohit Namjoshi

The NDSolve worked for me, once I first made the following correction in your code:

Resl_pair = Table[Rl[k] = 0.0, {k, 2, NN, 2}];
POSTED BY: Frank Iannarilli
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract