1.Integrate::pwrl: Unable to prove that the integral limit {0,x} is a real number. Adding assumptions may help.
2.Solve boundary value problems with discrete variables.
Clear["`*"]
b = 0.61;
h[x_] := Piecewise[{{3 - 0.8*x/b, 0 <= x < 1.60125}, {0.9,
1.60125 <= x <= 21}}]
eq = 163*y''''[x] - (0.6 \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(x\)]\(\((0.3 \((\((x //
h)\)\ *11800*x\ *y[x]*Tanh[
\*FractionBox[\(1\), \(0.6*\((x //
h)\)\)]])\))\) \[DifferentialD]x\)\)) y''[
x] + (x // h)* 11800*x* y[x]*Tanh[1/(0.6 (x // h))] +
0.04 D[(x // h) *11800*x *y[x]*Tanh[1/(0.6*(x // h))], x] -
0.6*0.3*(x // h)* 11800*x *y[x]*Tanh[1/(0.6*(x // h))]*y'[x] == 0
sol = NDSolveValue[{eq, y'''[0] == 0.008, y''[0] == 0.002,
y'[21] == 0, y[21] == 0}, y, {x, 0, 21}]
Plot[sol[x], {x, 0, 21}, PlotRange -> All]