Number 2 is really amazing. I thought I saw it sometimes somewhere, and even a proof, but I did not find it again. It seems convergence is really fast.
A code to get the expression
nn = 3;
ppp = Join[{Sqrt[2]},
hh[ Table[(z = If[OddQ[k], k + 1, k])/ If[OddQ[k], k, k + 1], #]]^(1/(2 #[[2]])) & /@
Table[{k, 2^j, 2^(j + 1) - 1}, {j, 1, nn}]]
Times @@ (ppp /. hh[x_] :> Times @@ x) // N
E/2 // N
or to check convergence
ff[n_] := Module[{},
ppp = Join[{Sqrt[2]},
hh[ Table[(z = If[OddQ[k], k + 1, k])/ If[OddQ[k], k, k + 1], #]]^(1/(2 #[[2]])) & /@
Table[{k, 2^j, 2^(j + 1) - 1}, {j, 1, n}]];
Times @@ (ppp /. hh[x_] :> Times @@ x) // N
]
ListLinePlot[
Table[{j, ff[j]}, {j, 2, 6}],
Epilog -> {Red, Line[{{2, E/2}, {6, E/2}}]},
PlotRange -> {1.35, 1.37}
]