Hello,
I'm new to wolframalpha.com, not sure I am in the right place to ask this question, apologies if. I just want to know if Wolfram|Alpha is able to calculate this limit, to know if the sum product converges or not:
$\lim_{m\rightarrow\infty} \sum_{n=1}^{m} n^{-0.5} \cos(\ln(n)) \sum_{n=1}^{m} (-1)^{n} n^{-0.5} \cos(\ln(n))$
The LateX may not work...
This is the "code" I enter, is it correct, please?
lim( sum( n^{-0.5} * cos( ln(n) ) ,n,1,m ) * sum( (-1)^{n} *n^{-0.5} * cos(ln(n)) ,n,1,m),m,inf)
What should I modify, please? Because it gives something else like "Interpreting as: cos", or it may be too much for the machine?