Math folks, and Mathematica make a big distinction between really close to zero and exactly zero. Even for something exponentially decreasing towards zero it is not going to be exactly zero.
In[1]:= ...CodeFromYourPreviousPostSnipped...
vars = {c[t], f2[t], f3[t], fm[t], fs[t], mp[t], o2[t], vp[t]};
solution = NDSolve[{c'[t] == odec, f2'[t] == odef2, f3'[t] == odef3, fm'[t] == odefm,
fs'[t] == odefs, mp'[t] == odemp, o2'[t] == odeo2, vp'[t] == odevp,
c[0] == 30, f2[0] == 100, f3[0] == 100, fm[0] == 50, fs[0] == 50,
mp[0] == 0, o2[0] == 100, vp[0] == 100}, vars, {t, 0, 31}];
allf = vars /. solution[[1]]; (* functions *)
allfprime = Map[D[#, t] &, allf]; (* derivatives *)
c[t] is first in the list, look at a plot
In[17]:= Plot[allf[[1]], {t, 0, 31}]
Out[17]= ...PlotSnipped...
Look at a plot of c'[t]
In[18]:= Plot[allfprime[[1]], {t, 0, 31}]
Out[18]= ...PlotSnipped...
Beyond t == 20 it looks close to zero, but how close?
In[19]:= Table[allfprime[[1]], {t, 0, 31}]
Out[19]= {-947.944, 0.726472, 0.0672147, -0.00443547, -0.00923631, -0.00695448,
-0.00470561, -0.00311015, -0.00204019, -0.00133365, -0.00087007,
-0.000566914, -0.000369095, -0.000240173, -0.000156233, -0.000101607,
-0.0000660714, -0.0000429592, -0.000027931, -0.0000181579, -0.0000118052,
-7.67559*10^-6, -4.9897*10^-6, -3.24209*10^-6, -2.10926*10^-6,
-1.37057*10^-6, -9.01694*10^-7, -8.27389*10^-7, -3.74807*10^-7,
-2.41653*10^-7, -1.55533*10^-7, -1.03173*10^-7}
So if you are going to solve that for exactly zero you have a problem, unless you get the solution near t==3 that you don' t want.
Let's compromise and, after looking at that plot of c'[t], find where c'[t]== -.001, which looks like it should be around t= 10
In[20]:= FindRoot[allfprime[[1]] == -.001, {t, 10}]
Out[20]= {t -> 9.67451}
So you might be able to see how to use that to "solve" for t for other values of your derivatives.
None of your derivatives are exactly zero, even at t==31, but most are darned small and getting smaller.
In[21]:= allfprime /. t -> 31
Out[21]= {-1.03173*10^-7, 1.68236*10^-8, -5.48649*10^-7, -4.21631*10^-7,
-9.11946*10^-6, 0.0000527061, 6.29529*10^-7, -7.2189*10^-6}