Michael, the reason I was at the Extreme Value Analysis conference where I met Tom Mikosch was to present a lognormally scaled stable distribution, The mathematics of the combination is that the stable tail eventually shows up and dominates as the distribution tails get longer. So if you have enough data, you should eventually be able to find a power tail in the stable domain of attraction. I have attached part of a notebook that was written in version 7; none of the code will work, It was written before Mathematica had stable distributions and used a MathLink to a program by John Nolan. The notebook with the whole presentation was too big to upload so I cut to the section with the distribution, but you can see the pictures and the math is all there.
You probably have the connections to get data from some place like WRDS and put some millisecond data for something like the SPY ETF in the Wolfram Data Repository. I would love to play with accurate data say from 2020 to present. I am exploring some data I have been scraping from the NASDAQ website which appears to be tick by tick data probably traded on their system; the heaviest tail I can find is from 2.6 to 3.1..
Attachments: