Thanks Robert for the simulation notebook and Stable 2:3 code.
I agree with you about trading bots forcing the intraday prices into local maxima and minima, creating a see-saw effect when it used to be more like wavelet cycles. The Stevanovich center at the university of Chicago had a series of 4 day conferences in 2017-2019 devoted to studying intraday trading. Most results confirmed massive use of trading bots and that trading at frequencies less than 1/4 a second gave no significant advantages. So much for all the hype about millisecond trading! I saw a researcher from the SEC give a presentation to this effect and then stated at the end of his talk how great millisecond trading was, even though the SEC research showed the opposite effect! It was obvious to everyone that the SEC was a toothless organization completely under the control of corporations, rather than the other way round.
So I agree that there is definitely serial dependence in the intraday prices. Perhaps another possibility would be to consider a ParameterMixtureDistribution where the parameters are taken from Fractal BrownianMotion with H>0.6 and heavy tailed distributions. The parameters would be time (for serial dependence) and the Hurst index H.