If:
$\text{FourierCosCoefficient}[f(t),t,2]=\frac{2 \int_0^{\pi } f(t) \cos (2 t) \, dt}{\pi }$
then:
2/Pi*Integrate[((I0 + Subscript[a, e]*Cos[\[Theta]])*(1 - (
Subscript[\[Alpha], e0]*Subscript[c, e]*
L)/((Subscript[m, e]*Cos[\[Theta]])^2 + 1) - (
Subscript[\[Alpha], w0]*Subscript[c, w]*
L)/((Subscript[p, w] + Subscript[m, e]*Cos[\[Theta]])^2 +
1))) Cos[2 \[Theta]], {\[Theta], 0,
Pi}]
I abort computation with 1 hour.
For general integral Mathematica can compute:
f = 2/Pi*Integrate[((I0 + Subscript[a, e]*Cos[\[Theta]])*(1 - (
Subscript[\[Alpha], e0]*Subscript[c, e]*
L)/((Subscript[m, e]*Cos[\[Theta]])^2 + 1) - (
Subscript[\[Alpha], w0]*Subscript[c, w]*
L)/((Subscript[p, w] + Subscript[m, e]*Cos[\[Theta]])^2 +
1))) Cos[2 \[Theta]], \[Theta],
Assumptions -> Subscript[m, e] > 0]
(*(1/(3 \[Pi]))(3 I0 Sin[2 \[Theta]] +
Sin[3 \[Theta]] Subscript[a, e] - (
3 L Log[-Sin[\[Theta]] Subscript[m, e] + Sqrt[1 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]] Subscript[a, e]
Subscript[c, e] (2 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)) Subscript[\[Alpha],
e0])/(\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(3\)]\
\*SqrtBox[\(1 +
\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]\)) + (
3 L Log[Sin[\[Theta]] Subscript[m, e] + Sqrt[1 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]] Subscript[a, e]
Subscript[c, e] (2 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)) Subscript[\[Alpha],
e0])/(\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(3\)]\
\*SqrtBox[\(1 +
\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]\)) - (
6 I0 L ArcTan[Subscript[m, e] - Sqrt[1 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]
Tan[\[Theta]/2]] Subscript[c, e] (2 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)) Subscript[\[Alpha],
e0])/(\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\
\*SqrtBox[\(1 +
\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]\)) + (
6 I0 L ArcTan[Subscript[m, e] + Sqrt[1 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]
Tan[\[Theta]/2]] Subscript[c, e] (2 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)) Subscript[\[Alpha],
e0])/(\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\
\*SqrtBox[\(1 +
\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)]\)) + (
6 L ArcTanh[((I + Subscript[m, e] - Subscript[p, w]) Tan[\[Theta]/
2])/Sqrt[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((\(-I\) +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]] Subscript[c,
w] (-I I0 Subscript[m, e] +
Subscript[a, e] (1 + I Subscript[p, w])) (\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] - \(2\
\*SuperscriptBox[\((\(-I\) +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)\)) Subscript[\[Alpha],
w0])/(\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(3\)]\
\*SqrtBox[\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((\(-I\) +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]\)) - (
6 L ArcTan[((1 + I Subscript[m, e] -
I Subscript[p, w]) Tan[\[Theta]/2])/Sqrt[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((I +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]] Subscript[c,
w] (-I0 Subscript[m, e] +
Subscript[a, e] (I + Subscript[p, w])) (\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] - \(2\
\*SuperscriptBox[\((I +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)\)) Subscript[\[Alpha],
w0])/(\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(3\)]\
\*SqrtBox[\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((I +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]\)) - (
12 L \[Theta] (I0 Subscript[c, e] Subscript[m, e]
Subscript[\[Alpha], e0] +
Subscript[c,
w] (I0 Subscript[m, e] -
2 Subscript[a, e] Subscript[p, w]) Subscript[\[Alpha], w0]))/
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(3\)]\) + (
3 Sin[\[Theta]] Subscript[a, e] (\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] - \(4\ L\ \((
\*SubscriptBox[\(c\), \(e\)]\
\*SubscriptBox[\(\[Alpha]\), \(e0\)] +
\*SubscriptBox[\(c\), \(w\)]\
\*SubscriptBox[\(\[Alpha]\), \(w0\)])\)\)\)))/
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\))*)
If we assume function is continuous,we take the limits:
Answer = Limit[f, \[Theta] -> Pi, Direction -> 1,
Assumptions -> Subscript[m, e] > 0] - Limit[f, \[Theta] -> 0] //
Simplify
(*(1/
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(3\)]\))L ((
2 I0 Subscript[c, e] Subscript[m, e] (2 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)) Subscript[\[Alpha],
e0])/Sqrt[1 +
\!\(\*SubsuperscriptBox[\(m\), \(e\), \(2\)]\)] + ((Log[(
I + Subscript[m, e] - Subscript[p, w])/Sqrt[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((\(-I\) +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]] -
Log[(-I -cript[m, e] + Subscript[p, w])/Sqrt[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((\(-I\) +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]]) Subscript[c,
w] (-I I0 Subscript[m, e] +
Subscript[a, e] (1 + I Subscript[p, w])) (\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] - \(2\
\*SuperscriptBox[\((\(-I\) +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)\)) Subscript[\[Alpha],
w0])/(\[Pi] Sqrt[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((\(-I\) +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]) + ((2 \[Pi] Floor[(
2 \[Pi] - 2 Arg[-I + Subscript[m, e] - Subscript[p, w]] +
Arg[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((I +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)])/(4 \[Pi])] -
2 \[Pi] Floor[(
2 \[Pi] - 2 Arg[2 I - 2 Subscript[m, e] + 2 Subscript[p, w]] +
Arg[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((I +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)])/(4 \[Pi])] -
I (Log[-I + Subscript[m, e] - Subscript[p, w]] -
Log[I - Subscript[m, e] + Subscript[p, w]])) Subscript[c,
w] (-I0 Subscript[m, e] +
Subscript[a, e] (I + Subscript[p, w])) (\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] - \(2\
\*SuperscriptBox[\((I +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)\)) Subscript[\[Alpha],
w0])/(\[Pi] Sqrt[\!\(
\*SubsuperscriptBox[\(m\), \(e\), \(2\)] -
\*SuperscriptBox[\((I +
\*SubscriptBox[\(p\), \(w\)])\), \(2\)]\)]) -
4 (I0 Subscript[c, e] Subscript[m, e] Subscript[\[Alpha], e0] +
Subscript[c,
w] (I0 Subscript[m, e] -
2 Subscript[a, e] Subscript[p, w]) Subscript[\[Alpha], w0]))*)