WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Finance Platform
System Modeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Application Server
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Wolfram Science
Mathematics
Physics
Graphics and Visualization
Graphs and Networks
Wolfram Language
Wolfram Summer School
Wolfram Function Repository
Wolfram Fundamental Physics Project
4
Sanjib Katuwal
[WSS22] Generalizing electromagnetism to fractional dimensions
Sanjib Katuwal, University of Florida
Posted
20 days ago
270 Views
|
1 Reply
|
4 Total Likes
Follow this post
|
Generalizing electromagnetism to fractional dimensions
By
Sanjib Katuwal
University of Florida
If some parts of our universe have fractional dimensions, it will be necessary to have solutions for electromagnetic fields which are valid in such regions. When we represent our universe through hypergraphs, the possibility of a universe with a fractional dimension is high. In this project, we will try to explore such a possibility and then find the fields due to some simple configurations like a point charge or a dipole. One approach we can take is to find the solutions of Maxwell’s equations in the general D (integral) dimension and use analytic continuation to find solutions for the fractional case. The other possibility could be to write the field equations in fractional dimensions and explore their solutions.
1. Introduction
W
o
l
f
r
a
m
P
h
y
s
i
c
s
P
r
o
j
e
c
t
h
a
s
t
r
i
e
d
t
o
s
e
t
u
p
a
c
l
a
s
s
o
f
m
o
d
e
l
s
t
h
a
t
a
r
e
s
i
m
p
l
e
a
n
d
s
t
r
u
c
t
u
r
e
l
e
s
s
b
u
t
c
a
n
s
t
i
l
l
p
r
o
v
i
d
e
a
f
o
u
n
d
a
t
i
o
n
f
r
o
m
w
h
i
c
h
v
a
r
i
o
u
s
c
o
m
p
l
e
x
p
h
y
s
i
c
a
l
p
h
e
n
o
m
e
n
a
c
a
n
e
m
e
r
g
e
.
T
h
e
i
d
e
a
o
f
Q
u
a
n
t
u
m
M
e
c
h
a
n
i
c
s
,
R
e
l
a
t
i
v
i
t
y
,
a
n
d
G
e
n
e
r
a
l
r
e
l
a
t
i
v
i
t
y
e
m
e
r
g
e
f
r
o
m
s
o
m
e
c
l
a
s
s
e
s
o
f
m
o
d
e
l
s
.
H
o
w
e
v
e
r
,
e
l
e
c
t
r
o
m
a
g
n
e
t
i
s
m
i
s
n
o
t
y
e
t
c
a
p
t
u
r
e
d
n
i
c
e
l
y
i
n
t
h
e
p
i
c
t
u
r
e
.
B
u
t
,
i
f
h
i
s
t
o
r
y
i
s
t
o
m
e
a
n
s
o
m
e
t
h
i
n
g
,
e
l
e
c
t
r
o
m
a
g
n
e
t
i
s
m
a
l
w
a
y
s
p
l
a
y
e
d
a
l
e
a
d
i
n
g
r
o
l
e
i
n
t
h
e
f
o
r
m
u
l
a
t
i
o
n
o
f
t
h
e
o
r
i
e
s
.
D
e
s
p
i
t
e
t
h
e
u
b
i
q
u
i
t
o
u
s
i
n
f
l
u
e
n
c
e
o
f
g
r
a
v
i
t
y
i
n
r
e
a
l
d
a
y
-
t
o
-
d
a
y
l
i
f
e
,
i
t
w
a
s
e
l
e
c
t
r
o
m
a
g
n
e
t
i
s
m
f
o
r
w
h
i
c
h
a
p
r
o
p
e
r
f
i
e
l
d
t
h
e
o
r
y
w
a
s
f
i
r
s
t
f
o
r
m
u
l
a
t
e
d
b
y
J
a
m
e
s
C
l
e
r
k
M
a
x
w
e
l
l
i
n
1
9
6
5
w
h
e
r
e
e
l
e
c
t
r
i
c
i
t
y
,
m
a
g
n
e
t
i
s
m
,
a
n
d
l
i
g
h
t
a
r
e
s
h
o
w
n
t
o
b
e
a
d
i
f
f
e
r
e
n
t
m
a
n
i
f
e
s
t
a
t
i
o
n
s
o
f
t
h
e
s
a
m
e
p
h
e
n
o
m
e
n
o
n
.
T
h
i
s
h
a
s
b
e
e
n
c
a
l
l
e
d
t
h
e
s
e
c
o
n
d
g
r
e
a
t
u
n
i
f
i
c
a
t
i
o
n
i
n
p
h
y
s
i
c
s
a
f
t
e
r
N
e
w
t
o
n
’
s
w
o
r
k
.
T
h
i
s
f
i
e
l
d
t
h
e
o
r
e
t
i
c
u
n
i
f
i
c
a
t
i
o
n
u
s
h
e
r
e
d
i
n
t
h
e
e
r
a
o
f
m
o
d
e
r
n
p
h
y
s
i
c
s
.
E
i
n
s
t
e
i
n
’
s
r
e
l
a
t
i
v
i
t
y
c
a
m
e
d
i
r
e
c
t
l
y
f
r
o
m
t
h
e
i
n
c
o
m
p
a
t
i
b
i
l
i
t
y
o
f
M
a
x
w
e
l
l
’
s
t
h
e
o
r
y
w
i
t
h
G
a
l
i
l
e
a
n
r
e
l
a
t
i
v
i
t
y
.
E
i
n
s
t
e
i
n
’
s
d
e
s
i
r
e
t
o
m
a
k
e
a
s
i
m
i
l
a
r
f
i
e
l
d
t
h
e
o
r
y
f
o
r
g
r
a
v
i
t
y
l
e
d
t
o
G
e
n
e
r
a
l
r
e
l
a
t
i
v
i
t
y
.
T
h
e
U
V
c
a
t
a
s
t
r
o
p
h
e
i
n
t
h
e
c
l
a
s
s
i
c
a
l
p
i
c
t
u
r
e
o
f
t
h
e
b
l
a
c
k
b
o
d
y
s
p
e
c
t
r
u
m
f
o
r
c
e
d
P
h
y
s
i
c
i
s
t
s
t
o
d
e
v
e
l
o
p
Q
u
a
n
t
u
m
t
h
e
o
r
y
.
E
v
e
n
i
n
t
h
e
2
0
t
h
c
e
n
t
u
r
y
,
Q
u
a
n
t
u
m
E
l
e
c
t
r
o
d
y
n
a
m
i
c
s
i
s
t
h
e
f
i
r
s
t
q
u
a
n
t
u
m
f
i
e
l
d
t
h
e
o
r
y
t
h
a
t
s
u
c
c
e
s
s
f
u
l
l
y
c
o
m
b
i
n
e
d
s
p
e
c
i
a
l
r
e
l
a
t
i
v
i
t
y
a
n
d
q
u
a
n
t
u
m
m
e
c
h
a
n
i
c
s
.
R
i
c
h
a
r
d
F
e
y
n
m
a
n
h
a
s
c
a
l
l
e
d
q
u
a
n
t
u
m
e
l
e
c
t
r
o
d
y
n
a
m
i
c
s
t
h
e
“
j
e
w
e
l
o
f
p
h
y
s
i
c
s
”
f
o
r
i
t
s
e
x
t
r
e
m
e
l
y
a
c
c
u
r
a
t
e
p
r
e
d
i
c
t
i
o
n
s
.
G
i
v
e
n
t
h
i
s
h
i
s
t
o
r
y
,
i
t
i
s
o
f
u
t
m
o
s
t
i
m
p
o
r
t
a
n
c
e
t
h
a
t
w
e
d
e
v
e
l
o
p
a
p
r
o
p
e
r
f
r
a
m
e
w
o
r
k
w
i
t
h
i
n
t
h
e
W
o
l
f
r
a
m
P
h
y
s
i
c
s
P
r
o
j
e
c
t
w
h
e
r
e
e
l
e
c
t
r
o
m
a
g
n
e
t
i
s
m
e
x
i
s
t
s
n
a
t
u
r
a
l
l
y
.
T
h
a
t
i
s
t
h
e
u
l
t
i
m
a
t
e
g
o
a
l
o
f
a
s
e
r
i
e
s
o
f
p
r
o
j
e
c
t
s
l
i
k
e
t
h
i
s
.
I
n
t
h
i
s
p
r
o
j
e
c
t
,
w
e
c
o
n
s
i
d
e
r
a
p
a
r
t
i
c
u
l
a
r
l
y
s
m
a
l
l
e
r
a
s
p
e
c
t
o
f
t
h
a
t
.
A
s
w
e
w
i
l
l
s
e
e
b
e
l
o
w
,
i
n
W
o
l
f
r
a
m
’
s
m
o
d
e
l
s
t
h
e
d
i
m
e
n
s
i
o
n
o
f
s
p
a
c
e
c
a
n
b
e
f
r
a
c
t
i
o
n
a
l
.
H
e
r
e
w
e
w
i
l
l
c
o
n
s
i
d
e
r
h
o
w
w
e
c
a
n
g
e
n
e
r
a
l
i
z
e
M
a
x
w
e
l
l
’
s
t
h
e
o
r
y
i
n
s
u
c
h
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
.
I
n
p
a
r
t
i
c
u
l
a
r
,
w
e
w
i
l
l
t
a
k
e
P
o
i
s
s
o
n
’
s
e
q
u
a
t
i
o
n
a
n
d
s
o
l
v
e
i
t
f
o
r
s
i
m
p
l
e
c
o
n
f
i
g
u
r
a
t
i
o
n
s
l
i
k
e
P
o
i
n
t
c
h
a
r
g
e
a
n
d
e
l
e
c
t
r
i
c
d
i
p
o
l
e
.
I
n
s
e
c
t
i
o
n
2
,
w
e
w
i
l
l
g
i
v
e
a
s
u
m
m
a
r
y
o
f
t
h
e
t
h
e
o
r
y
a
n
d
c
a
l
c
u
l
a
t
i
o
n
s
o
n
h
o
w
t
o
c
a
l
c
u
l
a
t
e
e
l
e
c
t
r
i
c
p
o
t
e
n
t
i
a
l
o
n
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
.
W
e
w
i
l
l
s
e
e
t
w
o
a
p
p
r
o
a
c
h
e
s
:
t
h
e
f
i
r
s
t
o
n
e
i
s
t
o
f
i
n
d
t
h
e
p
o
t
e
n
t
i
a
l
i
n
a
n
i
n
t
e
g
r
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
a
n
d
a
n
a
l
y
t
i
c
a
l
l
y
c
o
n
t
i
n
u
e
t
o
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
.
T
h
e
s
e
c
o
n
d
a
p
p
r
o
a
c
h
i
s
t
o
a
s
s
u
m
e
t
h
e
f
r
a
c
t
i
o
n
a
l
n
a
t
u
r
e
o
f
s
p
a
c
e
f
r
o
m
t
h
e
b
e
g
i
n
n
i
n
g
a
n
d
c
a
l
c
u
l
a
t
e
t
h
e
p
o
t
e
n
t
i
a
l
.
W
e
w
i
l
l
s
h
o
w
t
h
a
t
t
h
e
s
e
t
w
o
a
p
p
r
o
a
c
h
e
s
a
r
e
e
q
u
i
v
a
l
e
n
t
.
I
n
s
e
c
t
i
o
n
3
,
w
e
w
i
l
l
d
i
s
c
u
s
s
h
o
w
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
a
r
i
s
e
s
i
n
W
o
l
f
r
a
m
M
o
d
e
l
s
.
I
n
s
e
c
t
i
o
n
4
,
s
o
m
e
p
h
e
n
o
m
e
n
o
l
o
g
i
c
a
l
a
s
p
e
c
t
s
o
f
t
h
i
s
a
r
e
d
i
s
c
u
s
s
e
d
u
s
i
n
g
W
o
l
f
r
a
m
l
a
n
g
u
a
g
e
,
f
i
n
a
l
l
y
,
i
n
s
e
c
t
i
o
n
5
,
w
e
g
i
v
e
o
u
r
c
o
n
c
l
u
s
i
o
n
s
a
n
d
p
r
o
s
p
e
c
t
s
f
o
r
f
u
t
u
r
e
w
o
r
k
.
T
h
e
a
p
p
e
n
d
i
x
w
i
t
h
t
h
e
d
e
t
a
i
l
e
d
c
o
d
e
s
f
o
l
l
o
w
s
t
h
e
c
o
n
c
l
u
s
i
o
n
.
2. Theory and Calculations
L
e
t
s
b
e
g
i
n
o
u
r
c
o
n
s
i
d
e
r
a
t
i
o
n
w
i
t
h
t
h
e
M
a
x
w
e
l
l
’
s
e
q
u
a
t
i
o
n
s
:
∇
·
E
=
ρ
ϵ
0
(
G
a
u
s
s
l
a
w
o
f
e
l
e
c
t
r
i
c
i
t
y
)
∇
·
B
=
0
(
G
a
u
s
s
l
a
w
o
f
m
a
g
n
e
t
i
s
m
)
∇
×
E
=
-
∂
B
∂
t
(
F
a
r
a
d
a
y
’
s
l
a
w
o
f
i
n
d
u
c
t
i
o
n
)
∇
×
B
=
μ
0
(
J
+
ϵ
0
∂
E
∂
t
)
(
F
a
r
a
d
a
y
’
s
l
a
w
o
f
i
n
d
u
c
t
i
o
n
)
Method 1: Finding solution in General D dimension and continuing analytically
We consider a single point charge, q, at the origin and find the electric field strength at a distance r from the origin. Taking the first Gauss’ law in D-dimension and using divergence theorem we obtain:
E
(
r
)
Γ
(
D
/
2
)
2
D
/
2
π
ϵ
0
q
D
-
1
r
Lets first visualize this field and compare the fractional case with integral case around D=3.
I
n
[
]
:
=
e
l
e
c
t
r
i
c
F
i
e
l
d
[
r
_
,
d
_
]
:
=
G
a
m
m
a
[
d
/
2
]
2
*
d
/
2
π
*
1
d
-
1
r
I
n
[
]
:
=
M
a
n
i
p
u
l
a
t
e
[
P
l
o
t
[
{
e
l
e
c
t
r
i
c
F
i
e
l
d
[
r
,
3
]
,
e
l
e
c
t
r
i
c
F
i
e
l
d
[
r
,
d
]
}
,
{
r
,
0
,
1
0
}
,
P
l
o
t
S
t
y
l
e
{
R
e
d
,
B
l
u
e
}
,
P
l
o
t
L
e
g
e
n
d
s
P
l
a
c
e
d
[
{
"
D
=
3
"
,
S
t
r
i
n
g
J
o
i
n
[
"
D
=
"
,
T
o
S
t
r
i
n
g
[
d
]
]
}
,
{
0
.
7
,
0
.
7
}
]
,
P
l
o
t
T
h
e
m
e
"
S
c
i
e
n
t
i
f
i
c
"
,
F
r
a
m
e
L
a
b
e
l
-
>
{
S
t
y
l
e
[
"
r
"
,
1
5
]
,
S
t
y
l
e
[
"
E
(
r
)
"
,
1
5
]
}
,
P
l
o
t
L
a
b
e
l
"
T
h
e
E
l
e
c
t
r
i
c
F
i
e
l
d
S
t
r
e
n
g
t
h
f
o
r
D
D
i
m
e
n
s
i
o
n
s
"
]
,
{
d
,
2
.
1
,
3
.
0
,
0
.
0
5
}
]
From this electric field strength, we can easily obtain the potential,
ϕ
(
r
)
Γ
(
D
/
2
-
1
)
4
D
/
2
π
ϵ
0
q
D
-
2
r
We then visualize the potential:
I
n
[
]
:
=
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
[
r
_
,
d
_
]
:
=
G
a
m
m
a
[
(
d
/
2
)
-
1
]
4
*
d
/
2
π
*
1
d
-
2
r
I
n
[
]
:
=
M
a
n
i
p
u
l
a
t
e
[
P
l
o
t
[
{
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
[
r
,
3
]
,
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
[
r
,
d
]
}
,
{
r
,
0
,
1
0
}
,
P
l
o
t
S
t
y
l
e
{
R
e
d
,
B
l
u
e
}
,
P
l
o
t
L
e
g
e
n
d
s
P
l
a
c
e
d
[
{
"
D
=
3
.
0
"
,
S
t
r
i
n
g
J
o
i
n
[
"
D
=
"
,
T
o
S
t
r
i
n
g
[
d
]
]
}
,
{
0
.
7
,
0
.
7
}
]
,
P
l
o
t
T
h
e
m
e
"
S
c
i
e
n
t
i
f
i
c
"
,
F
r
a
m
e
L
a
b
e
l
-
>
{
S
t
y
l
e
[
"
r
"
,
1
5
]
,
S
t
y
l
e
[
"
ϕ
(
r
)
"
,
1
5
]
}
,
P
l
o
t
L
a
b
e
l
"
T
h
e
E
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
f
o
r
D
D
i
m
e
n
s
i
o
n
s
"
]
,
{
d
,
2
.
1
,
3
,
0
.
0
5
}
]
Method 2: Taking Poisson’s Equation for Fractional Case
T
h
e
o
t
h
e
r
m
e
t
h
o
d
w
o
u
l
d
b
e
t
o
t
a
k
e
t
h
e
P
o
i
s
s
o
n
’
s
e
q
u
a
t
i
o
n
s
i
n
D
=
2
+
α
d
i
m
e
n
s
i
o
n
,
w
h
e
r
e
0
<
α
<
1
,
a
n
d
s
o
l
v
e
f
o
r
t
h
e
p
o
t
e
n
t
i
a
l
d
u
e
t
o
a
p
o
i
n
t
c
h
a
r
g
e
.
T
h
e
P
o
i
s
s
o
n
’
s
e
q
u
a
t
i
o
n
f
o
r
a
p
o
i
n
t
c
h
a
r
g
e
s
o
u
r
c
e
:
2
∇
ϕ
=
-
q
ϵ
0
D
δ
(
r
)
B
e
c
a
u
s
e
D
=
2
+
α
w
i
t
h
α
n
o
n
-
i
n
t
e
g
e
r
,
w
e
w
i
l
l
u
s
e
M
a
n
d
e
l
b
r
o
t
s
c
a
l
i
n
g
i
n
t
h
e
i
n
t
e
g
r
a
t
i
o
n
:
α
d
x
=
α
/
2
π
x
α
-
1
|
Γ
(
α
/
2
)
d
x
W
i
t
h
t
h
e
u
s
e
o
f
t
h
i
s
s
c
a
l
i
n
g
,
o
n
e
c
a
n
p
r
o
v
e
t
h
a
t
t
h
e
v
a
r
i
o
u
s
o
r
d
i
n
a
r
y
p
r
o
p
e
r
t
i
e
s
o
f
D
i
r
a
c
-
D
e
l
t
a
f
u
n
c
t
i
o
n
a
n
d
t
h
e
F
o
u
r
i
e
r
t
r
a
n
s
f
o
r
m
a
r
e
v
a
l
i
d
f
o
r
t
h
e
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
c
a
s
e
a
s
w
e
l
l
.
T
h
e
n
t
a
k
i
n
g
f
o
u
r
i
e
r
t
r
a
n
s
f
o
r
m
o
f
t
h
e
P
o
i
s
s
o
n
’
s
e
q
u
a
t
i
o
n
,
o
n
e
r
e
a
c
h
e
s
a
t
t
h
e
f
o
l
l
o
w
i
n
g
s
o
l
u
t
i
o
n
f
o
r
t
h
e
p
o
t
e
n
t
i
a
l
.
ϕ
(
r
)
q
ϵ
0
1
+
α
/
2
(
2
π
)
1
α
/
2
r
∞
∫
0
J
α
/
2
(
ρ
r
)
d
ρ
1
-
α
/
2
ρ
W
e
w
o
u
l
d
t
h
e
n
l
i
k
e
t
o
c
o
m
p
a
r
e
t
h
i
s
r
e
s
u
l
t
w
i
t
h
t
h
e
f
i
r
s
t
m
e
t
h
o
d
.
T
h
e
f
o
l
l
o
w
i
n
g
c
o
d
e
w
i
l
l
t
a
k
e
f
e
w
m
i
n
u
t
e
s
t
o
r
u
n
:
I
n
[
]
:
=
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
2
[
r
_
,
a
l
p
h
a
_
]
:
=
1
1
+
a
l
p
h
a
/
2
(
2
P
i
)
a
l
p
h
a
/
2
r
N
I
n
t
e
g
r
a
t
e
B
e
s
s
e
l
J
[
a
l
p
h
a
/
2
,
r
h
o
*
r
]
1
-
a
l
p
h
a
/
2
r
h
o
,
{
r
h
o
,
0
,
I
n
f
i
n
i
t
y
}
I
n
[
]
:
=
P
l
o
t
[
{
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
[
r
,
2
.
7
]
,
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
2
[
r
,
0
.
7
]
}
,
{
r
,
1
,
1
0
}
,
P
l
o
t
S
t
y
l
e
{
{
R
e
d
,
D
o
t
t
e
d
}
,
{
B
l
u
e
,
D
a
s
h
e
d
}
}
,
P
l
o
t
L
e
g
e
n
d
s
P
l
a
c
e
d
[
{
"
M
e
t
h
o
d
1
"
,
"
M
e
t
h
o
d
2
"
}
,
{
0
.
7
,
0
.
7
}
]
,
P
l
o
t
T
h
e
m
e
"
S
c
i
e
n
t
i
f
i
c
"
,
F
r
a
m
e
L
a
b
e
l
-
>
{
S
t
y
l
e
[
"
r
"
,
1
5
]
,
S
t
y
l
e
[
"
ϕ
(
r
)
"
,
1
5
]
}
,
P
l
o
t
L
a
b
e
l
"
T
h
e
E
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
f
o
r
2
.
7
D
i
m
e
n
s
i
o
n
s
"
]
I
n
[
]
:
=
P
l
o
t
[
{
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
[
r
,
2
.
9
]
,
e
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
2
[
r
,
0
.
9
]
}
,
{
r
,
1
,
1
0
}
,
P
l
o
t
S
t
y
l
e
{
{
R
e
d
,
D
o
t
t
e
d
}
,
{
B
l
u
e
,
D
a
s
h
e
d
}
}
,
P
l
o
t
L
e
g
e
n
d
s
P
l
a
c
e
d
[
{
"
M
e
t
h
o
d
1
"
,
"
M
e
t
h
o
d
2
"
}
,
{
0
.
7
,
0
.
7
}
]
,
P
l
o
t
T
h
e
m
e
"
S
c
i
e
n
t
i
f
i
c
"
,
F
r
a
m
e
L
a
b
e
l
-
>
{
S
t
y
l
e
[
"
r
"
,
1
5
]
,
S
t
y
l
e
[
"
ϕ
(
r
)
"
,
1
5
]
}
,
P
l
o
t
L
a
b
e
l
"
T
h
e
E
l
e
c
t
r
i
c
P
o
t
e
n
t
i
a
l
f
o
r
2
.
9
D
i
m
e
n
s
i
o
n
s
"
]
The above plots clearly show the equivalence of two approaches considered above. Therefore, in what follows we won’t distinguish between these two methods and use the method 1 which is faster to implement. The bottom line is that our results for integral D-dimension can be analytically continued to cases where D could be fractional.
3. Fractional Dimensional Space in Wolfram Models
A
t
t
h
i
s
p
o
i
n
t
,
I
w
o
u
l
d
l
i
k
e
c
o
m
m
e
n
t
o
n
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
.
I
n
m
a
t
h
e
m
a
t
i
c
s
,
p
e
o
p
l
e
h
a
v
e
d
i
s
c
u
s
s
e
d
a
b
o
u
t
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
f
o
r
q
u
i
t
e
s
o
m
e
t
i
m
e
n
o
w
.
H
o
w
e
v
e
r
,
i
t
w
a
s
b
r
o
u
g
h
t
t
o
m
a
i
n
s
t
r
e
a
m
b
y
B
e
n
o
i
t
M
a
n
d
e
l
b
r
o
t
i
n
1
9
6
6
.
A
f
r
a
c
t
a
l
d
i
m
e
n
s
i
o
n
i
s
r
o
u
g
h
l
y
a
m
e
a
s
u
r
e
o
f
c
o
m
p
l
e
x
i
t
y
.
A
s
i
m
p
l
e
e
x
a
m
p
l
e
i
s
a
K
o
c
h
c
u
r
v
e
,
w
h
e
r
e
e
a
c
h
s
e
g
m
e
n
t
i
s
b
r
o
k
e
n
a
n
d
a
t
r
i
a
n
g
l
e
i
s
f
o
r
m
e
d
a
r
o
u
n
d
i
t
s
m
i
d
-
p
o
i
n
t
a
s
s
h
o
w
n
b
e
l
o
w
.
T
h
e
f
r
a
c
t
a
l
d
i
m
e
n
s
i
o
n
o
f
K
o
c
h
C
u
r
v
e
i
s
a
b
o
u
t
1
.
2
6
.
S
u
c
h
H
a
u
s
d
o
r
f
f
d
i
m
e
n
s
i
o
n
i
s
c
a
l
c
u
l
a
t
e
d
u
s
i
n
g
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
=
L
o
g
(
N
u
m
b
e
r
o
f
S
e
l
f
S
i
m
i
l
a
r
P
i
e
c
e
s
)
L
o
g
(
S
c
a
l
e
F
a
c
t
o
r
)
I
n
[
]
:
=
T
a
b
l
e
[
G
r
a
p
h
i
c
s
[
K
o
c
h
C
u
r
v
e
[
i
]
]
,
{
i
,
0
,
4
}
]
,
,
,
,
In Wolfram Model, we begin with some simple replacement rules and apply them iteratively, just like in the Koch Curve. Lets take the following example from Wolfram Physics introductory textbook. The following is a replacement rule:
I
n
[
]
:
=
R
u
l
e
P
l
o
t
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
{
{
1
,
2
,
2
}
,
{
3
,
1
,
4
}
}
-
>
{
{
2
,
5
,
2
}
,
{
2
,
3
,
5
}
,
{
4
,
5
,
5
}
}
]
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
A
u
t
o
m
a
t
i
c
]
If we use this replacement rule and run our model for 500 iterations, a nice structure starts to emerge:
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
{
{
1
,
2
,
2
}
,
{
3
,
1
,
4
}
}
-
>
{
{
2
,
5
,
2
}
,
{
2
,
3
,
5
}
,
{
4
,
5
,
5
}
}
,
{
{
0
,
0
,
0
}
,
{
0
,
0
,
0
}
}
,
5
0
0
,
"
F
i
n
a
l
S
t
a
t
e
P
l
o
t
"
]
The dimension of this output is defined by counting the number of nodes within the distance of r from a point X, represented by
V
r
(
X
)
and taking it to be approximately equal to
d
r
, where d is the approximate dimension. The approximate dimension has be plotted against r in the following plot.
I
n
[
]
:
=
C
e
n
t
e
r
e
d
D
i
m
e
n
s
i
o
n
E
s
t
i
m
a
t
e
L
i
s
t
[
g
_
G
r
a
p
h
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
L
o
g
D
i
f
f
e
r
e
n
c
e
s
"
]
[
N
[
F
i
r
s
t
[
V
a
l
u
e
s
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
G
r
a
p
h
N
e
i
g
h
b
o
r
h
o
o
d
V
o
l
u
m
e
s
"
]
[
g
,
G
r
a
p
h
C
e
n
t
e
r
[
g
]
]
]
]
]
]
;
S
h
o
w
[
L
i
s
t
L
i
n
e
P
l
o
t
[
T
a
b
l
e
[
C
e
n
t
e
r
e
d
D
i
m
e
n
s
i
o
n
E
s
t
i
m
a
t
e
L
i
s
t
[
U
n
d
i
r
e
c
t
e
d
G
r
a
p
h
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
H
y
p
e
r
g
r
a
p
h
T
o
G
r
a
p
h
"
]
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
{
{
1
,
2
,
2
}
,
{
3
,
1
,
4
}
}
-
>
{
{
2
,
5
,
2
}
,
{
2
,
3
,
5
}
,
{
4
,
5
,
5
}
}
,
{
{
0
,
0
,
0
}
,
{
0
,
0
,
0
}
}
,
t
,
"
F
i
n
a
l
S
t
a
t
e
"
]
]
]
]
,
{
t
,
5
0
0
,
2
5
0
0
,
5
0
0
}
]
,
F
r
a
m
e
-
>
T
r
u
e
,
P
l
o
t
S
t
y
l
e
-
>
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
P
h
y
s
i
c
s
P
r
o
j
e
c
t
S
t
y
l
e
D
a
t
a
"
]
[
"
G
e
n
e
r
i
c
L
i
n
e
P
l
o
t
"
,
"
P
l
o
t
S
t
y
l
e
s
"
]
]
,
P
l
o
t
[
2
,
{
r
,
0
,
5
0
}
,
P
l
o
t
S
t
y
l
e
-
>
D
o
t
t
e
d
]
]
The dimension of the plot goes to 2 as we take reasonably larger values of r. By “reasonably”, we mean that the value of r is still small as compared to the whole graph so as to avoid the boundary effects. This definition of dimension and the Hausdorff dimension look different but are similar. In what follows, we will take them to be the same, which they are in a restricted sense.
Simple Construction of a Fractional Dimensional Space
We consider a simple two dimensional grid as shown below. We will call such grid “
Without Additional Edges
”, a name that will make sense after we see the next diagram.
I
n
[
]
:
=
n
P
o
i
n
t
s
=
3
;
g
r
i
d
2
d
=
G
r
i
d
G
r
a
p
h
[
{
n
P
o
i
n
t
s
,
n
P
o
i
n
t
s
}
,
I
m
a
g
e
S
i
z
e
-
>
S
m
a
l
l
]
We can add edges to such a grid to change the dimension. As an example, we could add diagonal edges from left bottom to right top in each cell. We will call such a diagram “
With 1-Diagonal Edges
”.
I
n
[
]
:
=
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
=
E
d
g
e
A
d
d
[
g
r
i
d
2
d
,
#
]
&
@
T
a
b
l
e
[
I
f
[
M
o
d
[
n
,
n
P
o
i
n
t
s
]
!
=
0
,
n
-
>
n
+
n
P
o
i
n
t
s
+
1
,
U
n
e
v
a
l
u
a
t
e
d
[
S
e
q
u
e
n
c
e
[
]
]
]
,
{
n
,
1
,
n
P
o
i
n
t
s
^
2
-
n
P
o
i
n
t
s
-
1
}
]
Similarly, we can add another diagonal from right bottom to left top in each cell. We will call such diagram “
With 2-Diagonal Edge
s”.
I
n
[
]
:
=
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
=
E
d
g
e
A
d
d
[
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
,
#
]
&
@
T
a
b
l
e
[
I
f
[
M
o
d
[
n
,
n
P
o
i
n
t
s
]
!
=
1
,
n
-
>
n
+
n
P
o
i
n
t
s
-
1
,
U
n
e
v
a
l
u
a
t
e
d
[
S
e
q
u
e
n
c
e
[
]
]
]
,
{
n
,
1
,
n
P
o
i
n
t
s
^
2
-
n
P
o
i
n
t
s
}
]
In order to see how dimension changes when we add edges in these manners, we take a large grid (51 x 51) and compare their dimensions before and after adding edges. The dimensions are calculated about the center of the grid. We have terminated the calculation of dimension as we got closer to the boundary.
Note: Before running the following code, please run Section 1 of the appendix.
L
i
s
t
P
l
o
t
[
{
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
"
]
[
g
r
i
d
2
d
,
g
C
e
n
t
e
r
,
#
]
&
/
@
R
a
n
g
e
[
I
n
t
e
g
e
r
P
a
r
t
[
n
P
o
i
n
t
s
/
2
]
]
,
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
"
]
[
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
,
g
C
e
n
t
e
r
,
#
]
&
/
@
R
a
n
g
e
[
I
n
t
e
g
e
r
P
a
r
t
[
n
P
o
i
n
t
s
/
2
]
]
,
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
"
]
[
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
,
g
C
e
n
t
e
r
,
#
]
&
/
@
R
a
n
g
e
[
I
n
t
e
g
e
r
P
a
r
t
[
n
P
o
i
n
t
s
/
2
]
]
}
,
P
l
o
t
T
h
e
m
e
-
>
"
S
c
i
e
n
t
i
f
i
c
"
,
F
r
a
m
e
L
a
b
e
l
-
>
{
S
t
y
l
e
[
"
r
(
S
t
e
p
s
)
"
,
1
0
]
,
S
t
y
l
e
[
"
D
i
m
(
H
a
u
s
d
o
r
f
f
)
"
,
1
0
]
}
,
P
l
o
t
L
a
b
e
l
-
>
"
C
o
m
p
a
r
i
s
o
n
o
f
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
"
,
P
l
o
t
L
e
g
e
n
d
s
-
>
P
l
a
c
e
d
[
{
"
W
i
t
h
o
u
t
a
d
d
i
t
i
o
n
a
l
E
d
g
e
s
"
,
"
W
i
t
h
1
-
D
i
a
g
o
n
a
l
E
d
g
e
s
"
,
"
W
i
t
h
2
-
D
i
a
g
o
n
a
l
E
d
g
e
s
"
}
,
{
0
.
7
,
0
.
8
}
]
]
Similarly, we can consider 3D grid and add edges.
I
n
[
]
:
=
n
P
o
i
n
t
s
3
d
=
5
(
*
K
e
e
p
t
h
i
s
o
d
d
*
)
;
g
a
p
=
1
;
g
r
i
d
3
d
=
G
r
i
d
G
r
a
p
h
[
{
n
P
o
i
n
t
s
3
d
,
n
P
o
i
n
t
s
3
d
,
n
P
o
i
n
t
s
3
d
}
]
;
g
r
i
d
3
d
C
e
n
t
e
r
=
H
i
g
h
l
i
g
h
t
G
r
a
p
h
[
g
r
i
d
3
d
,
G
r
a
p
h
C
e
n
t
e
r
[
g
r
i
d
3
d
]
]
To see how the dimension changes, we consider a (25x25x25) grid.
Note: Before running the following code, please run Section 2 of the appendix.
L
i
s
t
P
l
o
t
[
{
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
"
]
[
g
r
i
d
3
d
C
e
n
t
e
r
,
G
r
a
p
h
C
e
n
t
e
r
[
g
r
i
d
3
d
C
e
n
t
e
r
]
,
#
]
&
/
@
R
a
n
g
e
[
I
n
t
e
g
e
r
P
a
r
t
[
n
P
o
i
n
t
s
3
d
/
2
]
]
,
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
"
]
[
g
r
i
d
3
d
E
d
g
e
,
G
r
a
p
h
C
e
n
t
e
r
[
g
r
i
d
3
d
C
e
n
t
e
r
]
,
#
]
&
/
@
R
a
n
g
e
[
I
n
t
e
g
e
r
P
a
r
t
[
n
P
o
i
n
t
s
3
d
/
2
]
]
}
,
P
l
o
t
T
h
e
m
e
-
>
"
S
c
i
e
n
t
i
f
i
c
"
,
F
r
a
m
e
L
a
b
e
l
-
>
{
S
t
y
l
e
[
"
r
(
S
t
e
p
s
)
"
,
1
0
]
,
S
t
y
l
e
[
"
D
i
m
(
H
a
u
s
d
o
r
f
f
)
"
,
1
0
]
}
,
P
l
o
t
L
a
b
e
l
-
>
"
C
o
m
p
a
r
i
s
i
o
n
o
f
H
a
u
s
d
o
r
f
f
D
i
m
e
n
s
i
o
n
"
,
P
l
o
t
L
e
g
e
n
d
s
-
>
P
l
a
c
e
d
[
{
"
W
i
t
h
o
u
t
a
d
d
i
t
i
o
n
a
l
E
d
g
e
s
"
,
"
W
i
t
h
a
d
d
i
t
i
o
n
a
l
E
d
g
e
s
"
}
,
{
0
.
7
,
0
.
3
}
]
]
As we had expected, we see that with addition of edges, the dimension of the grid goes up a little. By adding such edges, we can take an integer dimension space and construct fractional dimensional space from it using Wolfram Language. In the next section, we will also consider other ways of making fractional space.
4. Phenomenology
In section 2, we saw how to calculate electric potential due to a point charge in any types of space. In section 3, we considered how fractional dimensional space arises in Wolfram model and also a simple way to construct one from a 2D grid or a 3D grid. In the section, we will combine these two results. It will be difficult to visualize the differences if we considered the 3D grid because the 2D representation will be too crowded with dots and lines. Therefore, we will consider the 2D grid and see how the equipotential surfaces varies among these constructions and also make a sanity check of whether it makes sense.
Equipotential Surface due to a Point Charge in 2D Grids
The same 51x51 grid is taken and edges are added. The electric potential are calculated at each point assuming a point charge with
q
/
ϵ
0
=1 is placed at the center of the grid, which is marked with a black hexagon. The size and color of the vertices will be in accordance with the value of electric potential at that point. However, note that the absolute value of electric potential is too small to give us any meaningful size of the vertex. Therefore, we will rescale the potential to 0 through 1. We will also not consider the potential at the point of charge as that will be infinite.
Note : Please run Section 3 in the Appendix before running the following code. This might take several minutes.
I
n
[
]
:
=
{
g
r
i
d
2
d
,
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
,
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
}
,
,
Although the vertex size and colors are exact in the above image, the image is not very clear to see. In particular, we cannot see clearly what the shape of potential surfaces are. So we will enhance its colors slightly in the following image. The size of the vertices still correspond to the electric potential.
Note: Please run Section 4 in the Appendix before running the following code.
I
n
[
]
:
=
{
g
r
i
d
2
d
,
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
,
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
}
,
,
To further see the equipotential surfaces clearly, we will enhance both its vertex weight and its color slightly in the following image.
Note : Please run Section 5 in the Appendix before running the following code
.
I
n
[
]
:
=
{
g
r
i
d
2
d
,
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
,
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
}
,
,
We see that the shape of the equipotential surface changes depending on the geometry we are using. We also see that further we go, the potential gets smaller as seen by the red shift or smaller sizes of the vertex. One crucial point can be seen from the first plot in this section. We see that even at the same distance from the center, the potential is smaller for the second and third grid. That makes sense because the Hausdorff dimension of second and the third grid is larger so potential dies off quickly as compared to the first grid.
Equipotential Surface due to a Physical Dipole in a 2D Grids
A very similar approach can be taken to consider equipotential surfaces due to a physical dipole. We consider a physical dipole: two opposite point charges kept at a finite distance from each other. We won’t consider an ideal dipole because the definition of potential will require some notion of angle which we haven’t defined here.
Note : Please run Section 6 in the Appendix before running the following code .
I
n
[
]
:
=
{
g
r
i
d
2
d
D
,
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
D
,
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
D
}
,
,
We see similar effects of dimension on the potential. Another interesting aspect of this is the shape of zero potential region. On the first grid, the zero potential region is a line lying in between the two charges. On the second grid, it is a shape of triangle on either side of the charges, in a diagonal sense. On the third grid, its a triangle again but isosceles in this case.
Equipotential Surfaces using a Sprinkling Graph
W
e
c
a
n
a
l
s
o
g
e
n
e
r
a
t
e
a
s
p
a
c
e
w
i
t
h
f
r
a
c
t
i
o
n
a
l
H
a
u
s
d
o
r
f
f
d
i
m
e
n
s
i
o
n
b
y
u
s
i
n
g
s
p
r
i
n
k
l
i
n
g
f
u
n
c
t
i
o
n
i
n
W
o
l
f
r
a
m
L
a
n
g
u
a
g
e
.
S
p
r
i
n
k
l
i
n
g
f
u
n
c
t
i
o
n
g
e
n
e
r
a
t
e
s
r
a
n
d
o
m
s
p
a
t
i
a
l
g
r
a
p
h
b
y
s
p
r
i
n
k
l
i
n
g
p
o
i
n
t
s
o
n
a
m
a
n
i
f
o
l
d
.
T
h
e
m
a
n
i
f
o
l
d
i
t
s
e
l
f
c
a
n
b
e
e
i
t
h
e
r
f
l
a
t
o
r
c
u
r
v
e
d
.
H
e
r
e
w
e
w
i
l
l
c
o
n
s
i
d
e
r
a
f
l
a
t
m
a
n
i
f
o
l
d
.
S
p
r
i
n
k
l
i
n
g
p
o
i
n
t
s
a
r
e
c
h
o
s
e
n
b
y
P
o
i
s
s
o
n
p
r
o
c
e
s
s
.
W
e
w
i
l
l
c
h
o
o
s
e
2
0
0
p
o
i
n
t
s
i
n
a
2
D
m
a
n
i
f
o
l
d
a
n
d
c
o
n
n
e
c
t
t
h
e
m
u
s
i
n
g
R
i
e
m
a
n
n
i
a
n
m
e
t
r
i
c
a
n
d
d
i
s
c
r
e
t
e
n
e
s
s
s
c
a
l
e
o
f
0
.
3
.
D
i
s
c
r
e
t
e
n
e
s
s
s
c
a
l
e
m
e
a
s
u
r
e
s
a
t
w
h
i
c
h
d
i
s
t
a
n
c
e
t
w
o
p
o
i
n
t
s
a
r
e
t
o
b
e
c
o
n
s
i
d
e
r
e
d
a
d
j
a
c
e
n
t
.
T
h
e
c
h
a
r
g
e
i
s
k
e
p
t
a
t
a
b
o
u
t
t
h
e
c
e
n
t
e
r
o
f
t
h
e
g
r
a
p
h
a
n
d
m
a
r
k
e
d
r
e
d
.
O
n
c
e
a
g
a
i
n
t
h
e
s
i
z
e
a
n
d
c
o
l
o
r
o
f
v
e
r
t
i
c
e
s
a
r
e
i
n
a
c
c
o
r
d
a
n
c
e
w
i
t
h
t
h
e
p
o
t
e
n
t
i
a
l
a
t
t
h
e
p
o
i
n
t
.
Note : Please run Section 7 in the Appendix before running the following code .
I
n
[
]
:
=
g
r
a
p
h
S
Equipotential Surfaces using a Graph Derived using a Rule
As a final example, we want to consider a rule:
I
n
[
]
:
=
R
u
l
e
P
l
o
t
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
{
{
x
,
y
}
,
{
x
,
z
}
}
-
>
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
]
,
V
e
r
t
e
x
L
a
b
e
l
s
-
>
A
u
t
o
m
a
t
i
c
]
We will iterate this rule 10 times and convert the hypergraph generated to undirected graph. The point at about the center of whole graph where a point charge is kept is colored black. The potential is then calculated at all the vertices and the vertices are colored and sized in accordance with the value of potential. The further from the charge you go, the lower is the potential.
Note : Please run Section 8 in the Appendix before running the following code .
I
n
[
]
:
=
u
n
d
i
r
e
c
t
e
d
G
r
a
p
h
5. Concluding remarks
T
h
e
m
a
i
n
c
o
n
c
l
u
s
i
o
n
f
r
o
m
t
h
i
s
p
r
o
j
e
c
t
i
s
t
h
e
v
a
l
i
d
i
t
y
o
f
r
e
s
u
l
t
s
o
b
t
a
i
n
e
d
f
r
o
m
M
a
x
w
e
l
l
’
s
e
q
u
a
t
i
o
n
s
i
n
i
n
t
e
g
e
r
D
d
i
m
e
n
s
i
o
n
e
v
e
n
i
n
t
h
e
c
a
s
e
w
h
e
n
D
i
s
f
r
a
c
t
i
o
n
a
l
.
A
t
l
e
a
s
t
f
o
r
t
h
e
c
a
s
e
o
f
a
p
o
i
n
t
c
h
a
r
g
e
,
w
e
d
e
m
o
n
s
t
r
a
t
e
d
t
h
a
t
e
x
p
l
i
c
i
t
l
y
i
n
t
h
e
s
e
c
o
n
d
s
e
c
t
i
o
n
.
I
n
t
h
e
t
h
i
r
d
s
e
c
t
i
o
n
,
w
e
d
e
m
o
n
s
t
r
a
t
e
d
h
o
w
w
e
c
a
n
m
a
k
e
d
i
s
c
r
e
t
e
s
p
a
c
e
s
w
i
t
h
f
r
a
c
t
i
o
n
a
l
H
a
u
s
d
o
r
f
f
d
i
m
e
n
s
i
o
n
.
I
n
t
h
e
f
o
u
r
t
h
s
e
c
t
i
o
n
,
w
e
u
s
e
d
t
h
e
r
e
s
u
l
t
s
f
r
o
m
t
h
e
p
r
e
v
i
o
u
s
s
e
c
t
i
o
n
s
t
o
o
b
s
e
r
v
e
e
q
u
i
p
o
t
e
n
t
i
a
l
s
u
r
f
a
c
e
s
f
o
r
a
s
i
n
g
l
e
p
o
i
n
t
c
h
a
r
g
e
a
n
d
t
w
o
c
h
a
r
g
e
s
i
n
d
i
f
f
e
r
e
n
t
s
p
a
c
e
c
o
n
f
i
g
u
r
a
t
i
o
n
.
O
t
h
e
r
s
i
m
p
l
e
t
h
i
n
g
s
o
n
e
m
i
g
h
t
d
o
u
s
i
n
g
t
h
i
s
t
e
c
h
n
i
q
u
e
i
s
t
o
c
o
n
s
i
d
e
r
p
r
o
p
a
g
a
t
i
o
n
o
f
w
a
v
e
s
i
n
d
i
s
c
r
e
t
e
f
r
a
c
t
i
o
n
a
l
d
i
m
e
n
s
i
o
n
a
l
s
p
a
c
e
.
O
n
e
m
i
g
h
t
a
l
s
o
c
o
n
s
i
d
e
r
t
h
e
m
o
t
i
o
n
s
o
f
c
h
a
r
g
e
s
u
n
d
e
r
t
h
e
a
c
t
i
o
n
o
f
e
l
e
c
t
r
o
m
a
g
n
e
t
i
c
f
o
r
c
e
s
.
S
o
f
a
r
w
e
h
a
v
e
c
o
n
s
i
d
e
r
e
d
o
n
l
y
e
l
e
c
t
r
o
s
t
a
t
i
c
.
I
t
w
o
u
l
d
b
e
i
n
t
e
r
e
s
t
i
n
g
t
o
s
e
e
h
o
w
o
n
e
c
a
n
e
m
b
e
d
m
a
g
n
e
t
i
s
m
i
n
t
o
t
h
i
s
f
r
a
m
e
w
o
r
k
.
H
o
w
e
v
e
r
,
t
h
e
u
l
t
i
m
a
t
e
g
o
a
l
w
o
u
l
d
b
e
t
o
g
e
t
E
l
e
c
t
r
o
m
a
g
n
e
t
i
s
m
n
a
t
u
r
a
l
l
y
w
i
t
h
i
n
t
h
e
f
r
a
m
e
w
o
r
k
o
f
W
o
l
f
r
a
m
P
h
y
s
i
c
s
P
r
o
j
e
c
t
.
T
h
a
t
i
s
a
n
o
n
-
t
r
i
v
i
a
l
c
a
s
e
a
n
d
r
e
q
u
i
r
e
s
v
a
r
i
o
u
s
f
u
r
t
h
e
r
c
o
n
s
i
d
e
r
a
t
i
o
n
s
.
6. Acknowledgment
First of all, I would like to thank my mentors Alessandro Pisani and Xerxes Arsiwalla for their feedback, suggestions and support, and Stephen Wolfram for suggesting this project to me and his comments. I would also like to thank Jonthan Gorard and David Chester for their comments and suggestions. I must also thank Utkarsh Bajaj, Simone Fischer and Swastik Banerjee for useful discussions. And, finally, I would like to thank all the participants in the Wolfram Summer School 2022 along with staff who made this journey fun.
7. References
◼
https://www.wolframphysics.org/technical-introduction/
◼
S I Muslih and O P Agrawal, Fractional Dynamics and Control, (Springer, New York, 2010), 217
◼
https://www.wikipedia.org/
◼
B Zwiebach, A First Course in String Theory, (Cambridge University Press, UK, 2004), 40
Appendix
The detail codes are given here. In order to run all of the notebook, one must run these codes too. We have left smaller codes within the text and only copied larger codes in this section. We have also indicated in the main text so as to which subsection of codes in this appendix should be run before running the corresponding codes in the text.
Section 1: Comparison of Hausdorff Dimension for 2D Grid
Note: The following code will take about a minute to run.
n
P
o
i
n
t
s
=
5
1
;
i
n
t
M
P
o
i
n
t
=
I
n
t
e
g
e
r
P
a
r
t
[
n
P
o
i
n
t
s
*
n
P
o
i
n
t
s
/
2
]
;
(
*
i
n
t
e
g
e
r
p
a
r
t
o
f
m
i
d
-
p
o
i
n
t
*
)
g
r
i
d
2
d
=
G
r
i
d
G
r
a
p
h
[
{
n
P
o
i
n
t
s
,
n
P
o
i
n
t
s
}
,
V
e
r
t
e
x
S
i
z
e
-
>
{
(
i
n
t
M
P
o
i
n
t
+
1
)
-
>
0
.
3
}
,
V
e
r
t
e
x
S
t
y
l
e
-
>
{
(
i
n
t
M
P
o
i
n
t
+
1
)
-
>
B
l
a
c
k
}
,
V
e
r
t
e
x
S
h
a
p
e
F
u
n
c
t
i
o
n
-
>
{
(
i
n
t
M
P
o
i
n
t
+
1
)
-
>
"
H
e
x
a
g
o
n
"
}
]
;
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
=
E
d
g
e
A
d
d
[
g
r
i
d
2
d
,
#
]
&
@
T
a
b
l
e
[
I
f
[
M
o
d
[
n
,
n
P
o
i
n
t
s
]
!
=
0
,
n
-
>
n
+
n
P
o
i
n
t
s
+
1
,
U
n
e
v
a
l
u
a
t
e
d
[
S
e
q
u
e
n
c
e
[
]
]
]
,
{
n
,
1
,
n
P
o
i
n
t
s
^
2
-
n
P
o
i
n
t
s
-
1
}
]
;
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
=
E
d
g
e
A
d
d
[
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
,
#
]
&
@
T
a
b
l
e
[
I
f
[
M
o
d
[
n
,
n
P
o
i
n
t
s
]
!
=
1
,
n
-
>
n
+
n
P
o
i
n
t
s
-
1
,
U
n
e
v
a
l
u
a
t
e
d
[
S
e
q
u
e
n
c
e
[
]
]
]
,
{
n
,
1
,
n
P
o
i
n
t
s
^
2
-
n
P
o
i
n
t
s
}
]
;
v
e
r
t
i
c
e
s
G
e
n
=
C
o
m
p
l
e
m
e
n
t
[
R
a
n
g
e
[
n
P
o
i
n
t
s
*
n
P
o
i
n
t
s
]
,
{
i
n
t
M
P
o
i
n
t
+
1
}
]
;
g
C
e
n
t
e
r
=
G
r
a
p
h
C
e
n
t
e
r
[
g
r
i
d
2
d
]
;
(
*
c
e
n
t
e
r
f
o
r
a
l
l
t
h
e
g
r
i
d
s
*
)
Section 2: Comparison of Hausdorff Dimension for 3D Grid
Note : The following code will take several minutes to run .
n
P
o
i
n
t
s
3
d
=
2
5
;
g
a
p
=
5
;
(
*
o
n
l
y
q
u
a
r
t
e
r
o
f
e
d
g
e
s
a
r
e
m
a
d
e
*
)
g
r
i
d
3
d
=
G
r
i
d
G
r
a
p
h
[
{
n
P
o
i
n
t
s
3
d
,
n
P
o
i
n
t
s
3
d
,
n
P
o
i
n
t
s
3
d
}
]
;
g
r
i
d
3
d
C
e
n
t
e
r
=
H
i
g
h
l
i
g
h
t
G
r
a
p
h
[
g
r
i
d
3
d
,
G
r
a
p
h
C
e
n
t
e
r
[
g
r
i
d
3
d
]
]
;
M
o
d
u
l
e
[
{
n
=
n
P
o
i
n
t
s
3
d
}
,
{
i
=
R
a
n
g
e
[
n
-
1
,
n
^
2
-
1
,
n
]
,
t
a
b
l
e
=
C
o
m
p
l
e
m
e
n
t
[
R
a
n
g
e
[
1
,
n
^
3
-
(
n
+
1
)
,
g
a
p
]
,
U
n
i
o
n
[
n
*
R
a
n
g
e
[
n
^
2
]
,
(
R
a
n
g
e
[
n
]
+
#
*
n
&
/
@
i
)
]
/
/
F
l
a
t
t
e
n
]
}
;
t
a
b
l
e
]
;
g
r
i
d
3
d
E
d
g
e
=
E
d
g
e
A
d
d
[
g
r
i
d
3
d
C
e
n
t
e
r
,
#
]
&
@
F
l
a
t
t
e
n
[
{
#
-
>
#
+
(
n
P
o
i
n
t
s
3
d
+
1
)
}
&
/
@
t
a
b
l
e
]
;
Section 3: Equipotential Surface with exact vertex weight and colors based on the potential at the point
Note : The following code will take several minutes to run
.
I
n
[
]
:
=
n
P
o
i
n
t
s
=
5
1
;
i
n
t
M
P
o
i
n
t
=
I
n
t
e
g
e
r
P
a
r
t
[
n
P
o
i
n
t
s
*
n
P
o
i
n
t
s
/
2
]
;
(
*
i
n
t
e
g
e
r
p
a
r
t
o
f
m
i
d
-
p
o
i
n
t
*
)
g
r
i
d
2
d
=
G
r
i
d
G
r
a
p
h
[
{
n
P
o
i
n
t
s
,
n
P
o
i
n
t
s
}
,
V
e
r
t
e
x
S
i
z
e
-
>
{
(
i
n
t
M
P
o
i
n
t
+
1
)
-
>
0
.
8
}
,
V
e
r
t
e
x
S
t
y
l
e
-
>
{
(
i
n
t
M
P
o
i
n
t
+
1
)
-
>
B
l
a
c
k
}
,
V
e
r
t
e
x
S
h
a
p
e
F
u
n
c
t
i
o
n
-
>
{
(
i
n
t
M
P
o
i
n
t
+
1
)
-
>
"
H
e
x
a
g
o
n
"
}
,
I
m
a
g
e
S
i
z
e
-
>
S
m
a
l
l
]
;
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
=
E
d
g
e
A
d
d
[
g
r
i
d
2
d
,
#
]
&
@
T
a
b
l
e
[
I
f
[
M
o
d
[
n
,
n
P
o
i
n
t
s
]
!
=
0
,
n
-
>
n
+
n
P
o
i
n
t
s
+
1
,
U
n
e
v
a
l
u
a
t
e
d
[
S
e
q
u
e
n
c
e
[
]
]
]
,
{
n
,
1
,
n
P
o
i
n
t
s
^
2
-
n
P
o
i
n
t
s
-
1
}
]
;
e
d
g
e
d
g
r
i
d
2
d
S
e
c
o
n
d
=
E
d
g
e
A
d
d
[
e
d
g
e
d
g
r
i
d
2
d
F
i
r
s
t
,
#
]
&
@
T
a
b
l
e
[
I
f
[
M
o
d
[