Message Boards Message Boards

how to write an NRSolve function ?

Posted 11 years ago
The Mathematica function RSolve has limitations on the form of recurrence formulas that it will handle (these limitatiions seem to give rise to many similar questions on this discussion group).
What existing parts of Mathematica would I need to utilize, to try to write a new function to numerically solve systems of coupled nonlinear recurrence equations?
(call the new function NRSolve)
These nonlinear systems of recurrence equations often arise in macroeconomics.   

To be specific, here is a small model (small by macroeconomic standards) that I want to numerically solve using Mathematica, written in a RSolve-type recurrence-equation form:
 alpha = 10;
 beta = -1/2;
 lambda = 1;
 epsilon = 3/4;
 sigma = 1/2;
 At = 200;
 Cn = 400;
 
 gL = 2/100;
gMult[t_] := Piecewise[{{1, t <= 1}}, 1 + gL];
mua[t_] := (alpha*Ar[t]^beta - lambda);

eqs = {Cw[t] == (vC[t]*pc[t] + Aw[t - 1]*pa[t] - L[t - 1] +
      Ar[t]*(epa[t] - pa[t]))/(epc[t] + pc[t]),
  Cr[t] == (vD[t - 1] + Ar[t - 1]*pa[t])/pc[t],
  vC[t] == Cw[t] + Cr[t], L[t] == L[t - 1]*gMult[t], vD[t] == L[t],
  Aw[t] == At - Ar[t],
  Ar[t] == (Cr[t]*pc[t] + Aw[t - 1]*pa[t] - L[t - 1] - vD[t])/pa[t],
  pc[t] == pc[t - 1]*gMult[t]*(vC[t]/Cn)^sigma,
  pa[t] == epa[t]/(1 - mua[t]),
  epc[t] == epc[t - 1]*gMult[t]*(pc[t]/epc[t - 1])^epsilon,
  epa[t] == epa[t - 1]*gMult[t]*(pa[t]/epa[t - 1])^epsilon,
 
  Ar[0] == 100, Aw[0] == 100, vC[0] == 400, Cr[0] == 200,
  Cw[0] == 200, vD[0] == 100, L[0] == 100, pa[0] == 1, pc[0] == 1,
  epa[0] == 1, epc[0] == 1,
 
  Ar[1] == 100, Aw[1] == 100, vC[1] == 400, Cr[1] == 200,
  Cw[1] == 200, vD[1] == 100, L[1] == 100, pa[1] == 1, pc[1] == 1,
  epa[1] == 1, epc[1] == 1}

vars = {Ar[t], Aw[t], vC[t], Cr[t], Cw[t], vD[t], L[t], pa[t], pc[t],
   epa[t], epc[t]};

(* numerical solution desired for t>=2  *)
POSTED BY: Terry Heidelberg
2 Replies

RecurrenceTable is what you think of as NRSolve.

If you want something akin to NDSolve over a range, RecurrenceTable is a good function to start with. One could create an InterpolatingFunction therefrom, if a continuous rather than discrete result is desired.

Also there may be relevant ideas in the 2008 mathGroup thread at the link below.

http://forums.wolfram.com/mathgroup/archive/2008/Aug/msg00264.html

POSTED BY: Daniel Lichtblau
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract