Hello Daniel.
Using the procedure below, with the Nearest function, I was able to accomplish the task much faster.
s5 = {Sin[y] Cos[x], Sin[y] Sin[x], Cos[y]};
s6 = {Sin[x - y] Cos[x + y], Sin[x + y] Sin[x - y], Cos[y]};
ta5 = Table[s5, {y, 0, \[Pi], \[Pi]/60}, {x, 0, 2 \[Pi], \[Pi]/60}] //N // Flatten[#, 1] &;
ta6 = Table[s6, {y, 0, \[Pi], \[Pi]/60}, {x, 0, 2 \[Pi], \[Pi]/60}] //N // Flatten[#, 1] &;
pair = Outer[{#1, #2} &, ta5, ta6, 1] // Flatten[#, 1] &;
list = Map[Sqrt[Abs[(#[[1]] - #[[2]]) . (#[[1]] - #[[2]])]] &, pair] -> pair // Thread;
points = Nearest[list, 0, {All, 0.005}]; // Timing
{1.84375, Null}
Is there a more elegant or more practical way to do this using Nearest?
Regards,
Sinval