I have an expression that I want to evaluate:
-(1/2) + 10^(1 + n) + I/(2 Sqrt[35]) +
9^(2 + Floor[1/2 (-1 + n)])
Binomial[3 + 2 Floor[1/2 (-1 + n)],
2 + Floor[1/2 (-1 + n)]] Hypergeometric2F1[1,
5/2 + Floor[1/2 (-1 + n)], 3 + Floor[1/2 (-1 + n)], 36] -
9^(2 + Floor[1/2 (-1 + n)])
Binomial[1 + n, 2 + Floor[1/2 (-1 + n)]] Hypergeometric2F1[1,
1 - n + Floor[1/2 (-1 + n)], 3 + Floor[1/2 (-1 + n)], -9]
When I try to evaluate the expression for 2022 I don't get a complete answer. This is the answer I have:
2107179145515287992942057989159947544162985967355863735788743136509247\
1665839530294721133832227757181842482555395834603506837846957355423637\
0611324704809917794488592828904914335652262415368033369690773794924528\
1036713050739082883659431666002962870262529573433494739111636007778735\
0039793132918377637817334022242577038030742824913965745497495530833200\
5533744981824216484221320279459060800205307631676618207735861903493953\
6379496739738541695251198166826899170046733986330153528990495607738409\
5936897646589403744959902581308261997612805330931850818085288704941435\
8837506757391440347862534383287413623495303889315796473676772512288100\
1850947769871686026103996625203146320941974207990073499390879544364591\
8019049270934078821696046985132560225888401142352214464122566241678987\
8035036058168520093679507632326256269983693137442677115720078363670859\
9622718071415323351578464528791217092938788689804364682335989710575246\
5817260248672450664725492926387696503677346673985444790823085290187099\
2308865893916354490909325432773506514074086070515560848675154430426215\
2669040920272904790568466402928248934561833418873468796523863085647678\
6521235924234979279362966200779764847693519406582374934582857852004685\
3715609917712109023723984127317284328110732873439611112047013517342311\
1902972109001688492085178749920798797021002252874104405935545197209585\
4841762729127229614311705629092652305507772667769534652512693481531203\
3747871465719806716226256947204024924312962682800563526141655508746079\
5072764919229758454793794689278876035777285004203943953578977561771676\
469749089142866966885094240491519/2 + I/(2 Sqrt[35]) +
843105544086236946148256158015977117085359331191814265588553675419373\
5530665859483453912729389969611543807197495801424701220685598009456692\
6219353944095774239231533544878055638888105668851384019967778654693301\
9737175383738942855885999197497768945572840630174273257743519109950695\
6473820779032548995882625605631339461279984591008000285891411142337470\
0687727545485598986166384506059113013510504206606988697684427365116352\
3662930554342572757080093884538751588653690966852778493898171882618730\
9628639643308486703491117296859882764768505520172275433980682047027744\
1951207605347877706851612450170469888371089837428409754885461955949478\
1947503559996930741837418770563508718655600657785200250220148328090153\
9826528477560432439305514292569372619730112640768255144465444779727956\
4055439512094794408072865938599839860206648665833312774543562663135054\
3372678444940409687786684909405094246018337591494960155969664708449501\
9272256911568939295629748338478929601545731890250738204020832173105650\
0374420939663251388829279224607434034442435365421345746682385411544793\
8094774717244587327248731693281303913951891518767128053117662462551842\
8339176121785844884004255324965329498811849141329820696489858495675377\
4514614317175481511274849584612955668501016168510591874263495119805890\
6392297461086562657485647165784199999949439901620390239412633287259750\
4108738488931000915607319879496112875730666178253804703726305184702023\
8933704421082742955963611744383363229926591589134919277078001720616526\
3788939759887351395707077306995551437102144846671959354784044423780792\
0210595917892892618339107767108160 Hypergeometric2F1[1, 2025/2, 1013,
36]
I would like to have expression Hypergeometric2F1[1, 2025/2, 1013, 36] evaluate. Unfortunately, I don't know how to specify arbitrary working precision to return a numerical expression. Once I have that I can use Re to get the real part. I tried using WorkingPrecision, $MaxPrecision, $MaxExtraPrecision, $MaxNumber, and the backtick ` to indicate precision but still can't get the expression to evaluate. Please comment if you know how to make Hypergeometric2F1[1, 2025/2, 1013, 36] evaluate to a numerical value.