func = a^2 *(1/(1 + b Cos[x]))^2/c
int = Integrate[func, x]
(*(a^2 (-((2 ArcTanh[((-1 + b) Tan[x/2])/Sqrt[-1 + b^2]])/(-1 + b^2)^(
3/2)) + (b Sin[x])/((-1 + b^2) (1 + b Cos[x]))))/c*)
D[int, x] // FullSimplify
(*a^2/(c (1 + b Cos[x])^2)*)
func == D[int, x] // FullSimplify
(*True*)
The derivative of antiderivative gives the original function .
for y[0]= 0 then we have:
Limit[int, x -> 0](*Then C = 0 *)
y[x] == int // Expand
(*y[x] == -((2 ArcTanh[Tan[x/2]/Sqrt[3]])/(3 Sqrt[3])) + (2 Sin[x])/(
3 (1 + 2 Cos[x]))*)
Solve[y[x] == -((2 ArcTanh[Tan[x/2]/Sqrt[3]])/(3 Sqrt[3])) + (2 Sin[
x])/(3 (1 + 2 Cos[x])), x](*Solve can' t solve because is a Transcendental equation .*)
We can solve only numerically automatic and view the solution into on the Graph:
a = 1; b = 2; c = 1;
ContourPlot[y == int, {y, -1, 1}, {x, -Pi, Pi},
Frame -> False, Axes -> True, AxesLabel -> Automatic]
More info for Transcendental equation see here.