![enter image description here][1]
Here is the code:
For[i = 1, i = 7, i++
For[lambda = 0.01, lambda = 0.2, lambda = lambda + 0.001
Print[
Log10[R[10^-3, 10^-3, 10^(-i/10), 10^(-i/10), lambda, 0.5, 0]]]
]
];
Theses are othe fiunctions
ql[Y0A_, Y0B_, etaA_, etaB_,
lambda_] := (1 - ((1 - Y0A)/(1 + etaA*lambda)^2) - ((1 -
Y0B)/(1 + etaB*lambda)^2) + ((1 -
Y0A)*(1 -
Y0B)/(1 + etaA*lambda + etaB*lambda - etaA*etaB*lambda)^2))
el[Y0A_, Y0B_, etaA_, etaB_, lambda_, e0_,
ed_] := ((e0*
ql[Y0A, Y0B, etaA, etaB,
lambda]) - ((2*(e0 - ed)*etaA*etaB*
lambda (1 + lambda))/((1 + etaA*lambda)*(1 + etaB*lambda)*(1 +
etaA*lambda + etaB*lambda - etaA*etaB*lambda))))*(1/
ql[Y0A, Y0B, etaA, etaB, lambda])
H[x_] := -x*Log2[x] - (1 - x)*Log2[1 - x]
R[Y0A_, Y0B_, etaA_, etaB_, lambda_, e0_, ed_] :=
0.5*ql[Y0A, Y0B, etaA, etaB,
lambda]*(1 - 2 H[el[Y0A, Y0B, etaA, etaB, lambda, e0, ed]])