Group Abstract Group Abstract

Message Boards Message Boards

Non-linear mathematical model containing double integral fit using DEA

Posted 2 years ago

Hello guys!
I need your help to find the parameters by fitting the data using a differential evolution algorithm on a non-linear mathematical model containing double integral which can not be determined analytically but numerically. I used multiple functions to reduce the expression of integration,

F = {{\[Lambda]1, 0, 0}, {0, \[Lambda]1, 0}, {0, 0, 1/\[Lambda]1^2}};
c = Transpose[F] . F;
EGreen = 1/2 (c - IdentityMatrix[3]);
bleft = F . Transpose[F];
Nref = {Sin[\[CapitalTheta]] Cos[\[CapitalPhi]], 
   Sin[\[CapitalTheta]] Sin[\[CapitalPhi]], Cos[\[CapitalTheta]]};
ncur = F . Nref;
w1 = D[c1/(2 c2) (Exp[c2 (Imat)^3] - 1), Imat]; 
Imat = Simplify[
   Tr[EGreen. (TensorProduct[Nref, Nref])] + Sqrt[
    Tr[EGreen^2 . (TensorProduct[Nref, Nref])]]];
Hmod = 1/
    2 (TensorProduct[Nref, Nref] + 
      1/(2 Sqrt[
        trEEH]) (EGreen . (TensorProduct[Nref, 
            Nref]) + (TensorProduct[Nref, Nref]) . EGreen)) /. 
   trEEH -> Tr[EGreen . EGreen . (TensorProduct[Nref, Nref])];
hmod = Simplify[F . Hmod . Transpose[F]];

Sigma11BiaxialMatchedInvariant[n_, b_, c1_, c2_] := 
  Table[0.3 (\[Lambda]1^2 - 1/\[Lambda]1^4) + 
    NIntegrate[
     4 n Sqrt[b/(2 Pi)]
        Exp[2 b (Cos[\[Alpha] - \[CapitalPhi]] \
Sin[\[CapitalTheta]])^2]/
       Erfi[Sqrt[2 b]]*2 w1*(-hmod[[3, 3]] + hmod[[1, 1]])*
       Sin[\[CapitalTheta]] /. {\[Alpha] -> 0}, {\[CapitalPhi], 0, 
      2 \[Pi]}, {\[CapitalTheta], 0, \[Pi]}], {\[Lambda]1, 0.5, 1.5, 
    0.04}];

fit = NonlinearModelFit[data, 
  Sigma11BiaxialMatchedInvariantSigma11[n, b, c1, c2], {n, b, c1, c2}, \[Lambda]1, 
  Method -> {NMinimize, 
    Method -> {"DifferentialEvolution", "ScalingFactor" -> 0.9, 
      "CrossProbability" -> 0.1, 
      "PostProcess" -> {FindMinimum, Method -> "QuasiNewton"}}}]

I have attached the data. Please help me!

Attachments:
POSTED BY: RAHUL KUMAR
3 Replies
Posted 2 years ago

I have already attached data in GST33.mat file. As far as trEEH concerned, I have already substituted the expression trEEH -> Tr[EGreen . EGreen . (TensorProduct[Nref, Nref])] . You can check the editted code for AI11. Sorry for the error.

POSTED BY: RAHUL KUMAR
Posted 2 years ago
POSTED BY: RAHUL KUMAR
Posted 2 years ago

I don't think you can get much help without giving the data, trEEH, and AI11 not to mention exactly where you need help. Do you get an error message? Warning message? If so, what did it say? Does NonlinearModelFit keep running forever?

POSTED BY: Jim Baldwin
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard