Yes. I evaluate now. Result:
Result1 =
BodePlot[H[I*2*\[Pi]*freq], {freq, 10^-3, 10^6},
PlotRange -> {{-90, 60}}, PlotLayout -> "Magnitude",
ScalingFunctions -> {"Log10", "dB"},
FrameLabel -> {HoldForm[Text[Frequency[Hz]]],
HoldForm[Text[Magnitude[dB]]]}, GridLines -> Automatic,
PlotStyle -> Thickness[0.005],
FrameTicks -> {{Automatic,
Automatic}, {Table[{10^i, Superscript[10, i]}, {i, -3, 5}],
None}}]

Result2 =
BodePlot[H[I*2*\[Pi]*freq], {freq, 10^-3, 10^6},
PlotRange -> {{-180, 0}}, PlotLayout -> "Phase",
ScalingFunctions -> {"Log10", "Degree"},
FrameLabel -> {HoldForm[Text[Frequency[Hz]]],
HoldForm[Text[Phase[Degree]]]}, GridLines -> Automatic,
PlotStyle -> Thickness[0.005],
FrameTicks -> {{Automatic,
Automatic}, {Table[{10^i, Superscript[10, i]}, {i, -3, 6}],
None}}]

Result3 =
BodePlot[H[I*2*\[Pi]*freq], {freq, 10^-3, 10^6},
PlotRange -> {{-90, 60}, {-180, 0}},
ScalingFunctions -> {{"Log10", "dB"}, {"Log10", "Degree"}},
FrameLabel -> {{HoldForm[Text[Frequency[Hz]]],
HoldForm[Text[Magnitude[dB]]]}, {HoldForm[Text[Frequency[Hz]]],
HoldForm[Text[Phase[Degree]]]}}, GridLines -> Automatic,
PlotStyle -> Thickness[0.005],
FrameTicks -> {{Automatic,
Automatic}, {Table[{10^i, Superscript[10, i]}, {i, -3, 5}],
None}}]

Thank you.
Attachments: