The notebook contains all the data in its present form. You can simply type
Dataimp = {{0.0459664, 5., 0.000731}, {0.0459664, 10., 0.00136}, {0.0459664,
15., 0.00195}, {0.0459664, 20., 0.00255}, {0.0459664, 30.,
0.00356}, {0.0459664, 40., 0.00469}, {0.0459664, 60.,
0.0059}, {0.0766106, 5., 0.00106}, {0.0766106, 10.,
0.00208}, {0.0766106, 15., 0.00301}, {0.0766106, 20.,
0.00407}, {0.0766106, 30., 0.00577}, {0.0766106, 40.,
0.00719}, {0.0766106, 60., 0.00889}, {0.127684, 5.,
0.0018}, {0.127684, 10., 0.0036}, {0.127684, 15.,
0.00502}, {0.127684, 20., 0.00633}, {0.127684, 30.,
0.00939}, {0.127684, 40., 0.0116}, {0.127684, 60.,
0.0143}, {0.212807, 5., 0.00263}, {0.212807, 10.,
0.00518}, {0.212807, 15., 0.00744}, {0.212807, 20.,
0.00939}, {0.212807, 30., 0.0134}, {0.212807, 40.,
0.0168}, {0.212807, 60., 0.0211}, {0.354679, 5.,
0.00441}, {0.354679, 10., 0.00846}, {0.354679, 15.,
0.0121}, {0.354679, 20., 0.0162}, {0.354679, 30.,
0.0229}, {0.354679, 40., 0.0276}, {0.354679, 60.,
0.0328}, {0.591132, 5., 0.00701}, {0.591132, 10.,
0.0133}, {0.591132, 15., 0.0207}, {0.591132, 20.,
0.0257}, {0.591132, 30., 0.0352}, {0.591132, 40.,
0.0435}, {0.591132, 60., 0.0518}, {0.985219, 5., 0.0109}, {0.985219,
10., 0.0223}, {0.985219, 15., 0.0306}, {0.985219, 20.,
0.0388}, {0.985219, 30., 0.0577}, {0.985219, 40.,
0.0691}, {0.985219, 60., 0.0791}, {1.64203, 5., 0.0174}, {1.64203,
10., 0.034}, {1.64203, 15., 0.0468}, {1.64203, 20.,
0.0604}, {1.64203, 30., 0.0895}, {1.64203, 40., 0.105}, {1.64203,
60., 0.119}, {2.73672, 5., 0.025}, {2.73672, 10., 0.0473}, {2.73672,
15., 0.0675}, {2.73672, 20., 0.0844}, {2.73672, 30.,
0.114}, {2.73672, 40., 0.145}, {2.73672, 60., 0.16}, {4.5612, 5.,
0.0332}, {4.5612, 10., 0.0652}, {4.5612, 15., 0.0867}, {4.5612, 20.,
0.107}, {4.5612, 30., 0.143}, {4.5612, 40., 0.167}, {4.5612, 60.,
0.188}, {7.602, 5., 0.0393}, {7.602, 10., 0.0707}, {7.602, 15.,
0.0965}, {7.602, 20., 0.116}, {7.602, 30., 0.155}, {7.602, 40.,
0.174}, {7.602, 60., 0.17}, {12.67, 5., 0.0337}, {12.67, 10.,
0.0566}, {12.67, 15., 0.0777}, {12.67, 20., 0.0894}, {12.67, 30.,
0.114}, {12.67, 40., 0.121}, {12.67, 60., 0.114}, {0.396432, 5.,
0.00108}, {0.396432, 10., 0.00191}, {0.396432, 15.,
0.00253}, {0.396432, 20., 0.00333}, {0.396432, 30.,
0.00472}, {0.396432, 40., 0.00606}, {0.396432, 60.,
0.0066}, {0.773593, 5., 0.00158}, {0.773593, 10.,
0.00301}, {0.773593, 15., 0.00395}, {0.773593, 20.,
0.00485}, {0.773593, 30., 0.00725}, {0.773593, 40.,
0.0089}, {0.773593, 60., 0.0104}, {1.20857, 5., 0.00243}, {1.20857,
10., 0.00437}, {1.20857, 15., 0.00602}, {1.20857, 20.,
0.00738}, {1.20857, 30., 0.0105}, {1.20857, 40., 0.014}, {1.20857,
60., 0.0154}, {1.89131, 5., 0.0032}, {1.89131, 10.,
0.00601}, {1.89131, 15., 0.00763}, {1.89131, 20.,
0.00983}, {1.89131, 30., 0.0139}, {1.89131, 40., 0.0179}, {1.89131,
60., 0.0196}, {2.94571, 5., 0.00428}, {2.94571, 10.,
0.00799}, {2.94571, 15., 0.0104}, {2.94571, 20., 0.0126}, {2.94571,
30., 0.0173}, {2.94571, 40., 0.0226}, {2.94571, 60.,
0.0241}, {5.7813, 5., 0.00636}, {5.7813, 10., 0.0103}, {5.7813, 15.,
0.0126}, {5.7813, 20., 0.0152}, {5.7813, 30., 0.0196}, {5.7813,
40., 0.0242}, {5.7813, 60., 0.0247}, {9.02984, 5.,
0.0047}, {9.02984, 10., 0.00729}, {9.02984, 15., 0.00846}, {9.02984,
20., 0.00975}, {9.02984, 30., 0.0119}, {9.02984, 40.,
0.014}, {9.02984, 60., 0.0155}, {11.2873, 5., 0.00505}, {11.2873,
10., 0.00652}, {11.2873, 15., 0.00763}, {11.2873, 20.,
0.0083}, {11.2873, 30., 0.00982}, {11.2873, 40., 0.011}, {11.2873,
60., 0.012}, {14.0954, 5., 0.00421}, {14.0954, 10.,
0.00531}, {14.0954, 15., 0.00588}, {14.0954, 20.,
0.00587}, {14.0954, 30., 0.00673}, {14.0954, 40.,
0.00785}, {14.0954, 60., 0.00815}, {17.6192, 5., 0.00322}, {17.6192,
10., 0.00342}, {17.6192, 15., 0.00358}, {17.6192, 20.,
0.00378}, {17.6192, 30., 0.00402}, {17.6192, 40.,
0.00463}, {17.6192, 60., 0.00468}, {22.024, 5., 0.00235}, {22.024,
10., 0.00236}, {22.024, 15., 0.00235}, {22.024, 20.,
0.0024}, {22.024, 30., 0.00257}, {22.024, 40., 0.00275}, {22.024,
60., 0.00307}, {27.53, 5., 0.00195}, {27.53, 10., 0.00181}, {27.53,
15., 0.00193}, {27.53, 20., 0.00192}, {27.53, 30., 0.0021}, {27.53,
40., 0.00217}, {27.53, 60., 0.00229}}
This question was posted in a very similar form several times and for my replies I usually did this. It seems to work. In most of the other cases some of the variables were not defined and the numerical integration goes wrong. (The error messages make this actually quite clear!) This time the following parameters are missing:
Et = 5.; k5 = 0.2; k6 = 0.2; ki = 0.2;
If you add these before executing
model4[k1_?NumericQ, k2_?NumericQ, k3_?NumericQ, k4_?NumericQ,
S0_?NumericQ,
te_] := (model4[k1, k2, k3, k4, S0] =
P1[te] /.
First[NDSolve[{Derivative[1][Eu][t] ==
k2 ES1[t] - k1 Eu[t] S[t] + k3 ES1[t] + k4 ES1[t] -
k6 Eu[t] S[t] + k5 ES2[t],
Derivative[1][ES1][t] == k1 Eu[t] S[t] - ES1[t] (k2 + k3 + k4),
Derivative[1][ES2][t] ==
k6 Eu[t] S[t] - k5 ES2[t] - ki ES2[t],
Derivative[1][P1][t] == k3 ES1[t],
Derivative[1][P2][t] == k4 ES1[t],
Derivative[1][E2][t] == ki ES2[t],
Derivative[1][S][t] ==
k2 ES1[t] + k5 ES2[t] - k1 Eu[t] S[t] - k6 Eu[t] S[t],
ES2[0] == 0, S[0] == S0, Eu[0] == Et, ES1[0] == 0, P1[0] == 0,
P2[0] == 0, E2[0] == 0}, {ES2, S, Eu, ES1, P1, P2, E2}, {t, 0,
100}, MaxSteps -> 1000000, PrecisionGoal -> 6]])
and
fit = NonlinearModelFit[Dataimp,
model4[k1, k2, k3, k4, S0,
te], {{k1, 6}, {k2, 10}, {k3, 10}, {k4, 5}}, {S0, te},
Weights -> (1/#3 &)]
the fitting will run through without any problems. This is the output:
FittedModel[model4[0.0006726055289741539,12.046052203842411
,5.573475116321559,6.678715049526951
,S0,te]]
This problem of not defining the parameters has been the normal problem in the notebooks in the other posts as well.
Best wishes,
Marco