I am trying to compute the absolute value of the complex expression
1/3 (1 + a +
b) + ((1 - I Sqrt[3]) (-(-1 - a - b)^2 +
3 (a c + b c + b d - a b d)))/(3 2^(
2/3) (2 + 6 a + 6 a^2 + 2 a^3 + 6 b + 12 a b + 6 a^2 b + 6 b^2 +
6 a b^2 + 2 b^3 - 9 a c - 9 a^2 c - 9 b c - 18 a b c -
9 b^2 c - 9 b d + 9 a^2 b d - 9 b^2 d + 9 a b^2 d + 27 c d -
27 a c d +
Sqrt[(2 + 6 a + 6 a^2 + 2 a^3 + 6 b + 12 a b + 6 a^2 b +
6 b^2 + 6 a b^2 + 2 b^3 - 9 a c - 9 a^2 c - 9 b c -
18 a b c - 9 b^2 c - 9 b d + 9 a^2 b d - 9 b^2 d +
9 a b^2 d + 27 c d - 27 a c d)^2 +
4 (-(-1 - a - b)^2 + 3 (a c + b c + b d - a b d))^3])^(
1/3)) - (1/(
6 2^(1/3)))(1 + I Sqrt[3]) (2 + 6 a + 6 a^2 + 2 a^3 + 6 b + 12 a b +
6 a^2 b + 6 b^2 + 6 a b^2 + 2 b^3 - 9 a c - 9 a^2 c - 9 b c -
18 a b c - 9 b^2 c - 9 b d + 9 a^2 b d - 9 b^2 d + 9 a b^2 d +
27 c d - 27 a c d +
Sqrt[(2 + 6 a + 6 a^2 + 2 a^3 + 6 b + 12 a b + 6 a^2 b + 6 b^2 +
6 a b^2 + 2 b^3 - 9 a c - 9 a^2 c - 9 b c - 18 a b c -
9 b^2 c - 9 b d + 9 a^2 b d - 9 b^2 d + 9 a b^2 d + 27 c d -
27 a c d)^2 +
4 (-(-1 - a - b)^2 + 3 (a c + b c + b d - a b d))^3])^(1/3)
by using ComplexExpand[Abs[]] of the expression. I thought I could do this because the parameters $a,b,c,d$ are all real. But it just keeps running indefinitely. Is there a workaround/a way to actually get an answer?