g[n_] := Sum[Binomial[n - 1, n - i]*
Sum[Binomial[k + i, i]*Binomial[n - 1, n - k], {k, 0, n}], {i, 0,
n}];
Table[g[n], {n, 1, 15}]
(* {2, 14, 106, 838, 6802, 56190, 470010, 3968310, 33747490, 288654574, \
2480593546, 21400729382, 185239360178, 1607913963614, 13991107041306}*)
A051708 or Closed Form solution for the series works for:
$n\in \mathbb{Z}$ and
$n\geq 1$:
W[n_] :=((-1)^n 4^(-2 +
n) ((-1 + n) (3 + n) JacobiP[-2 + n, -2 n, 3, -(1/2)] - 4 (7 + n (4 + n)) JacobiP[-1 + n, -1 - 2 n, 2, -(1/2)]))/(3 n (1 + n));
Table[W[n], {n, 1, 15}]
(*{2, 14, 106, 838, 6802, 56190, 470010, 3968310, 33747490, 288654574, \
2480593546, 21400729382, 185239360178, 1607913963614, 13991107041306}*)
We can check(Code is Slow):
g[n_] :=
Sum[Binomial[n - 1, n - i]*
Sum[Binomial[k + i, i]*Binomial[n - 1, n - k], {k, 0, n}], {i, 0,
n}];
g1[n_] := ((-1)^
n 4^(-2 +
n) ((-1 + n) (3 + n) JacobiP[-2 + n, -2 n, 3, -(1/2)] -
4 (7 + n (4 + n)) JacobiP[-1 + n, -1 - 2 n, 2, -(1/2)]))/(
3 n (1 + n));
Table[g[n] - g1[n], {n, 1, 200}]
(*{0,0, and 0...}*)
Regards M.I.