I know nothing about Schroedinger. I just reworked the original code to make it easier to change the parameters:
Clear[\[HBar], L, \[CapitalGamma], m, \[CapitalEpsilon], x, A, B, G,
H, sols];
parameterRules = {\[HBar] -> 1, L -> 1, \[CapitalGamma] -> 100,
m -> 1};
\[Alpha] = Sqrt[2 m (\[CapitalGamma] - \[CapitalEpsilon])]/\[HBar];
k = Sqrt[2 m \[CapitalEpsilon]]/\[HBar];
\[Psi]1[x_] = G*Exp[\[Alpha] x];
\[Psi]2[x_] = A*Sin[k x] + B*Cos[k x];
\[Psi]3[x_] = H*Exp[-\[Alpha] x];
l2Norm =
Assuming[
m (\[CapitalGamma] - \[CapitalEpsilon]) > 0 && \[HBar] > 0 &&
L > 0, Simplify[
Sqrt[Integrate[\[Psi]1[x]^2, {x, -Infinity, -L/2}] +
Integrate[\[Psi]2[x]^2, {x, -L/2, L/2}] +
Integrate[\[Psi]3[x]^2, {x, L/2, Infinity}]]]];
regularityConditions = {\[Psi]1[-L/2] == \[Psi]2[-L/2], \[Psi]1'[-L/
2] == \[Psi]2'[-L/2], \[Psi]2[L/2] == \[Psi]3[L/2], \[Psi]2'[
L/2] == \[Psi]3'[L/2]};
d = Simplify[
Det[CoefficientArrays[regularityConditions, {A, B, G, H}][[2]]]];
energyValues[params_] :=
SolveValues[
d == 0 && 0 < \[CapitalEpsilon] < \[CapitalGamma] /.
params, \[CapitalEpsilon], Reals]
sols[params_] :=
sols[params] =
Table[1/l2Norm*
Piecewise[{{\[Psi]1[x],
x <= -L/2}, {\[Psi]2[x], -L/2 < x <= L/2}}, \[Psi]3[
x]] /. \[CapitalEpsilon] -> eVal /. params /.
Quiet@Solve[
regularityConditions /. params /. \[CapitalEpsilon] ->
eVal][[1]] /. Thread[{A, B, G, H} -> 1],
{eVal, energyValues[params]}];
sols[parameterRules] // N // Chop
Plot[Evaluate[sols[parameterRules]],
Evaluate[{x, -L, L} /. parameterRules]]
With[{params = {\[HBar] -> 1, L -> 3, \[CapitalGamma] -> 100, m -> 1}},
Plot[Evaluate[sols[params]], Evaluate[{x, -L, L} /. params]]]