(1) This should link to the mathematica.stackexchange crosspost.
(2) The notebook should use consistent notation for {P1,P2,P3}
.
(3) You might try the suggestion from a comment (mine) in MSE. Specifically, convert exponentials to trigs, and optimize the log of the expression of interest.
P1[\[Phi]_] :=
2^-4*ExpToTrig[ ((E^(I*(\[Phi]/2)) +
E^(-I*(\[Phi]/2))) (E^(I*(-(\[Phi]/2))) +
E^(I*(\[Phi]/2))))]^2;
P2[\[Phi]_] :=
2^-3 *ExpToTrig[ (E^(I*(\[Phi])) -
E^(-I*(\[Phi]))) (E^(I*(-\[Phi])) - E^(I*(\[Phi])))];
P3[\[Phi]_] :=
2^-4 *ExpToTrig[ ((E^(I*(\[Phi]/2)) -
E^(-I*(\[Phi]/2))) (E^(I*(-(\[Phi]/2))) -
E^(I*(\[Phi]/2))))]^2;
L[\[Phi]_, m0_, m1_,
m2_] := ((P1[\[Phi]])^m0)*((P2[\[Phi]])^m1)*((P3[\[Phi]])^m2)
In[24]:= llog = PowerExpand[Log[L[\[Phi], m0, m1, m2]]]
(* Out[24]= -m1 Log[2] + 4 m0 Log[Cos[\[Phi]/2]] +
4 m2 Log[Sin[\[Phi]/2]] + 2 m1 Log[Sin[\[Phi]]] *)
In[26]:= Solve[D[llog, \[Phi]] == 0, \[Phi]]
(* Out[26]= {{\[Phi] ->
ConditionalExpression[
2 (-ArcTan[Sqrt[m1 + 2 m2]/Sqrt[
2 m0 + m1]] + \[Pi] ConditionalExpression[
1, \[Placeholder]]),
ConditionalExpression[1, \[Placeholder]] \[Element]
Integers]}, {\[Phi] ->
ConditionalExpression[
2 (ArcTan[Sqrt[m1 + 2 m2]/Sqrt[
2 m0 + m1]] + \[Pi] ConditionalExpression[1, \[Placeholder]]),
ConditionalExpression[1, \[Placeholder]] \[Element] Integers]}} *)