Bx1 = Px1 X1 - Py1 Yx1 - Pn1 nx1; (* eq 1 *)
Bx2 = 1/(1 + r) (Px2 X2 - Py2 Yx2 - Pn2 nx2); (* eq 2 *)
Lx = Simplify[Bx1] +
Simplify[
Bx2] + [Lambda]1 (Log[
H] + [Delta] Log[nx1] + [Epsilon] Log[Yx1] -
X1) + [Lambda]2 (Log[
H] + [Delta] Log[nx2] + [Epsilon] Log[Yx2] - X2); (* eq 3 *)
varsx = {X1, X2, Yx1, Yx2, nx1, nx2, [Lambda]1, [Lambda]2};
Solve[Thread[D[Lx, #] & /@ varsx == 0], varsx]
This code generates me error
Solve::incnst: Inconsistent or redundant transcendental equation. After reduction, the bad equation is -Py2 Yx2+Px2 [Epsilon] == 0
. >>
just give me the solution, as under
Attachments: