Message Boards Message Boards

0
|
742 Views
|
6 Replies
|
3 Total Likes
View groups...
Share
Share this post:

Why I can´t get a MemberQ for a series of sublists but individually they give the true result

Posted 4 months ago

If i make the evaluation of each number it works and gives true , but if i use a list of numbers it does not give me for example

{{1, 1, 2, 3, 5, 6, 1, 1, 1, 1, 1, 0}, {0, 1, 2, 1, 5, 1, 1, 1, 1, 0, 
  4, 4}, {0, 1, 2, 3, 5, 6, 3, 1, 3, 4, 4, 1}, {1, 1, 2, 1, 1, 5, 3, 
  1, 3, 0, 4, 4}, {1, 1, 2, 3, 5, 5, 3, 1, 3, 1, 1, 0}, {0, 1, 2, 1, 
  1, 5, 1, 1, 1, 3, 1, 4}, {0, 1, 2, 3, 5, 5, 1, 1, 1, 4, 4, 1}}

each one evaluates to true individually, but as group of numbers it gives me {false,false,false...}....

AS = Cases[Tuples[Range[60], 2], {p_, i_} /; EvenQ[p] && OddQ[i] && p - i == 7];
    pairs = AS;

(* Function to verify if a number is prime *)
isPrimeZ[x_, y_] := Module[{z},
  z = 7000 + 914 + y;
  z == 7907 + x && PrimeQ[z]
];

(* Filtering the pairs that satisfy the condition *)
results = Select[pairs, isPrimeZ[#[[1]], #[[2]]] &];

(* Extracting the prime numbers *)
primeNumbers = Table[7000 + 914 + pair[[2]], {pair, results}];

(* Displaying the prime numbers *)
primeNumbers

(* Function to verify if a number is in the list *)
isMemberZ[x_, y_] := Module[{z},
  z = 7000 + 914 + y;
  z == 7907 + x && MemberQ[primeNumbers, z]
];

(* Filtering the pairs that satisfy the condition *)
resultsMember = Select[pairs, isMemberZ[#[[1]], #[[2]]] &];

(* Extracting the numbers *)
numbersInList = Table[7000 + 914 + pair[[2]], {pair, resultsMember}];

(* Displaying the results *)
numbersInList
nn=Range[1,10000000]
n=Select[nn,PrimeQ,(1000)]
n2=Select[nn,IntegerQ,(500)]
k=(n^2)-1+(n)+(2-4n)
d=n^4-1+n^2
c=n^3+2
e=Mod[c,3]
f=Mod[d,3]
g=Mod[k,3]
h=Mod[c,7]
i=Mod[d,7]
j=Mod[k,7]
l=Mod[c,4]
m=Mod[d,4]
o=Mod[k,4]
r=Mod[c,5]
s=Mod[d,5]
t=Mod[k,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
n2=numbersInList
k1=(n2^2)-1+(n2)+(2-4n2)
d1=n2^4-1+n2^2
c1=n2^3+2
e1=Mod[c1,3]
f1=Mod[d1,3]
g1=Mod[k1,3]
h1=Mod[c1,7]
i1=Mod[d1,7]
j1=Mod[k1,7]
l1=Mod[c1,4]
m1=Mod[d1,4]
o1=Mod[k1,4]
r1=Mod[c1,5]
s1=Mod[d1,5]
t1=Mod[k1,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
pp1=Transpose[{e1,f1,g1,h1,i1,j1,l1,m1,o1,r1,s1,t1}]
existeSublista = Table[AnyTrue[pp1, SubsetQ[#, QQ] &],7]
6 Replies

Your final line

existeSublista = Table[AnyTrue[pp1, SubsetQ[#, QQ] &], 7]

does not make much sense, because it simply repeats the output of AnyTrue[pp1, SubsetQ[#, QQ] &] seven times. And no element of pp1 is a subset of QQ.

Did you mean this?

Map[MemberQ[QQ, #] &, pp1]
POSTED BY: Gianluca Gorni

yes ,thank you very much!

Your AS gives an empty list. Maybe you forgot the underscores:

AS = Cases[Tuples[Range[60], 2], {p_, i_} /;
   EvenQ[p] && OddQ[i] && p - i == 7]
POSTED BY: Gianluca Gorni

OK thank you i Will see what is wrong

AS=Cases[Tuples[Range[190],2],{p_,i_}/;EvenQ@p && OddQ@i && p-i==7]
nn=Range[1,10000000]
n=Select[nn,PrimeQ,(1000)]
n2=Select[nn,IntegerQ,(500)]
k=(n^2)-1+(n)+(2-4n)
d=n^4-1+n^2
c=n^3+2
e=Mod[c,3]
f=Mod[d,3]
g=Mod[k,3]
h=Mod[c,7]
i=Mod[d,7]
j=Mod[k,7]
l=Mod[c,4]
m=Mod[d,4]
o=Mod[k,4]
r=Mod[c,5]
s=Mod[d,5]
t=Mod[k,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
n2=7963
k1=(n2^2)-1+(n2)+(2-4n2)
d1=n2^4-1+n2^2
c1=n2^3+2
e1=Mod[c1,3]
f1=Mod[d1,3]
g1=Mod[k1,3]
h1=Mod[c1,7]
i1=Mod[d1,7]
j1=Mod[k1,7]
l1=Mod[c1,4]
m1=Mod[d1,4]
o1=Mod[k1,4]
r1=Mod[c1,5]
s1=Mod[d1,5]
t1=Mod[k1,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
pp1={e1,f1,g1,h1,i1,j1,l1,m1,o1,r1,s1,t1}
existeSublista = MemberQ[QQ, pp1]

this gives me true for one individual sublist
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract