Message Boards Message Boards

0
|
744 Views
|
6 Replies
|
3 Total Likes
View groups...
Share
Share this post:

Why I can´t get a MemberQ for a series of sublists but individually they give the true result

Posted 4 months ago

If i make the evaluation of each number it works and gives true , but if i use a list of numbers it does not give me for example

{{1, 1, 2, 3, 5, 6, 1, 1, 1, 1, 1, 0}, {0, 1, 2, 1, 5, 1, 1, 1, 1, 0, 
  4, 4}, {0, 1, 2, 3, 5, 6, 3, 1, 3, 4, 4, 1}, {1, 1, 2, 1, 1, 5, 3, 
  1, 3, 0, 4, 4}, {1, 1, 2, 3, 5, 5, 3, 1, 3, 1, 1, 0}, {0, 1, 2, 1, 
  1, 5, 1, 1, 1, 3, 1, 4}, {0, 1, 2, 3, 5, 5, 1, 1, 1, 4, 4, 1}}

each one evaluates to true individually, but as group of numbers it gives me {false,false,false...}....

AS = Cases[Tuples[Range[60], 2], {p_, i_} /; EvenQ[p] && OddQ[i] && p - i == 7];
    pairs = AS;

(* Function to verify if a number is prime *)
isPrimeZ[x_, y_] := Module[{z},
  z = 7000 + 914 + y;
  z == 7907 + x && PrimeQ[z]
];

(* Filtering the pairs that satisfy the condition *)
results = Select[pairs, isPrimeZ[#[[1]], #[[2]]] &];

(* Extracting the prime numbers *)
primeNumbers = Table[7000 + 914 + pair[[2]], {pair, results}];

(* Displaying the prime numbers *)
primeNumbers

(* Function to verify if a number is in the list *)
isMemberZ[x_, y_] := Module[{z},
  z = 7000 + 914 + y;
  z == 7907 + x && MemberQ[primeNumbers, z]
];

(* Filtering the pairs that satisfy the condition *)
resultsMember = Select[pairs, isMemberZ[#[[1]], #[[2]]] &];

(* Extracting the numbers *)
numbersInList = Table[7000 + 914 + pair[[2]], {pair, resultsMember}];

(* Displaying the results *)
numbersInList
nn=Range[1,10000000]
n=Select[nn,PrimeQ,(1000)]
n2=Select[nn,IntegerQ,(500)]
k=(n^2)-1+(n)+(2-4n)
d=n^4-1+n^2
c=n^3+2
e=Mod[c,3]
f=Mod[d,3]
g=Mod[k,3]
h=Mod[c,7]
i=Mod[d,7]
j=Mod[k,7]
l=Mod[c,4]
m=Mod[d,4]
o=Mod[k,4]
r=Mod[c,5]
s=Mod[d,5]
t=Mod[k,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
n2=numbersInList
k1=(n2^2)-1+(n2)+(2-4n2)
d1=n2^4-1+n2^2
c1=n2^3+2
e1=Mod[c1,3]
f1=Mod[d1,3]
g1=Mod[k1,3]
h1=Mod[c1,7]
i1=Mod[d1,7]
j1=Mod[k1,7]
l1=Mod[c1,4]
m1=Mod[d1,4]
o1=Mod[k1,4]
r1=Mod[c1,5]
s1=Mod[d1,5]
t1=Mod[k1,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
pp1=Transpose[{e1,f1,g1,h1,i1,j1,l1,m1,o1,r1,s1,t1}]
existeSublista = Table[AnyTrue[pp1, SubsetQ[#, QQ] &],7]
6 Replies

Your final line

existeSublista = Table[AnyTrue[pp1, SubsetQ[#, QQ] &], 7]

does not make much sense, because it simply repeats the output of AnyTrue[pp1, SubsetQ[#, QQ] &] seven times. And no element of pp1 is a subset of QQ.

Did you mean this?

Map[MemberQ[QQ, #] &, pp1]
POSTED BY: Gianluca Gorni

Your AS gives an empty list. Maybe you forgot the underscores:

AS = Cases[Tuples[Range[60], 2], {p_, i_} /;
   EvenQ[p] && OddQ[i] && p - i == 7]
POSTED BY: Gianluca Gorni
nn=Range[1,10000000]
n=Select[nn,PrimeQ,(1000)]
n2=Select[nn,IntegerQ,(500)]
k=(n^2)-1+(n)+(2-4n)
d=n^4-1+n^2
c=n^3+2
e=Mod[c,3]
f=Mod[d,3]
g=Mod[k,3]
h=Mod[c,7]
i=Mod[d,7]
j=Mod[k,7]
l=Mod[c,4]
m=Mod[d,4]
o=Mod[k,4]
r=Mod[c,5]
s=Mod[d,5]
t=Mod[k,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
n2=7963
k1=(n2^2)-1+(n2)+(2-4n2)
d1=n2^4-1+n2^2
c1=n2^3+2
e1=Mod[c1,3]
f1=Mod[d1,3]
g1=Mod[k1,3]
h1=Mod[c1,7]
i1=Mod[d1,7]
j1=Mod[k1,7]
l1=Mod[c1,4]
m1=Mod[d1,4]
o1=Mod[k1,4]
r1=Mod[c1,5]
s1=Mod[d1,5]
t1=Mod[k1,5]
QQ=Transpose[{e,f,g,h,i,j,l,m,o,r,s,t}]
pp1={e1,f1,g1,h1,i1,j1,l1,m1,o1,r1,s1,t1}
existeSublista = MemberQ[QQ, pp1]

this gives me true for one individual sublist

OK thank you i Will see what is wrong

AS=Cases[Tuples[Range[190],2],{p_,i_}/;EvenQ@p && OddQ@i && p-i==7]

yes ,thank you very much!

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract