Group Abstract Group Abstract

Message Boards Message Boards

Analytical solution of a system of linear ODEs

Posted 11 months ago

How to solve a system of differential equations

x''[t] + t  x'[t] + x[t] = z[t],   y''[t] + y'[t] + y[t] = 0

and z''[t] + z'[t] +z[t] = 0 analytically using Mathematica?

6 Replies

It does not work.

Posted 11 months ago
In[1]:= $VersionNumber

Out[1]= 14.1

In[2]:= {x[t],y[t],z[t]}/.FullSimplify[DSolve[
  {x''[t]+t x'[t]+x[t]==z[t],y''[t]+y'[t]+y[t]==0,z''[t]+z'[t]+z[t]==0},
  {x[t],y[t],z[t]},t]]

Out[2]= {{(6*C[2] + Sqrt[2*Pi]*(E^(1/4 - (I/4)*Sqrt[3])*(Sqrt[3]*E^((I/2)*
  Sqrt[3])*C[4]*Erf[(I + Sqrt[3] - (2*I)*t)/(2*Sqrt[2])] - (3*I)*C[3]*Erf[(-I +
  Sqrt[3] + (2*I)*t)/(2*Sqrt[2])]) + 3*C[1]*Erfi[t/Sqrt[2]]))/(6*E^(t^2/2)),
  (C[6]*Cos[(Sqrt[3]*t)/2] + C[5]*Sin[(Sqrt[3]*t)/2])/E^(t/2), 
  ((-3 - (3*I)*Sqrt[3])*C[3] + (3 + I*Sqrt[3])*E^(I*Sqrt[3]*t)*C[4])/(6*E^(((1 +
  I*Sqrt[3])*t)/2))}}

with no warning or error messages.

But, unless I have made a mistake, substituting the solution into the original three equations does not result in {True,True,True}

POSTED BY: Bill Nelson

Try:

{x[t], y[t], z[t]} /. 
  FullSimplify[
   dsol = DSolve[
     ode = {
       x''[t] + t x'[t] + x[t] == z[t], 
       y''[t] + y'[t] + y[t] == 0,
       z''[t] + z'[t] + z[t] == 0},
     {x, y, z}, t]];
ode /. dsol // FullSimplify

(*  {{True, True, True}}  *)

If you solved for {x[t], y[t], z[t]} instead of {x, y, z}, you will have to do some extra work to substitute the solution into the derivatives x'[t], y'[t], and z'[t]. You didn't show what you substituted, so I cannot comment definitively.

POSTED BY: Michael Rogers
Posted 11 months ago
{x[t],y[t],z[t]}/.FullSimplify[DSolve[
  {x''[t]+t x'[t]+x[t]==z[t],y''[t]+y'[t]+y[t]==0,z''[t]+z'[t]+z[t]==0},
  {x[t],y[t],z[t]},t]]
POSTED BY: Bill Nelson
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard
Be respectful. Review our Community Guidelines to understand your role and responsibilities. Community Terms of Use