Group Abstract Group Abstract

Message Boards Message Boards

0
|
746 Views
|
2 Replies
|
3 Total Likes
View groups...
Share
Share this post:

About 3D plot and there are some strange white part

Posted 3 months ago

I have tried use "MaxRecursion" "PlotPoints", but the white part cannot be deleted totally. Does anyone can help?

POSTED BY: lede li
2 Replies

The UnitStep discontinuities are assumed to be discontinuities in the entire expression. It's not easy to get rid of all the spurious ones in general. The following seems to work in this case:

d = 1; c = 1/4; \[Alpha] = 3/5; \[Lambda] = 1/2; z$lower = .2; 
z$upper = .5; y$upper = 1;
F$G8 = Plot3D[{-((c - d)^2/(2 (-2 + \[Delta] + 2 \[Lambda])))
          UnitStep[
         c/\[Delta] - (c - d)/(
          2 (-2 + \[Delta] + 2 \[Lambda]))] UnitStep[
         6 - (UnitStep[((
               2 (c - d) \[Beta])/((-2 + \[Delta] + 
                  2 \[Lambda]) (-2 + 8 \[Beta] + \[Delta] + 
                  2 \[Lambda]))) + ((
               2 (c - d) \[Beta])/((-2 + \[Delta] + 
                  2 \[Lambda]) (-2 + 8 \[Beta] + \[Delta] + 
                  2 \[Lambda]))) - ((0) + ((-c + d)/(-2 + 
                  8 \[Beta] + \[Delta] + 2 \[Lambda])))] + 
            UnitStep[(
             2 (c - d) \[Beta])/((-2 + \[Delta] + 2 \[Lambda]) (-2 + 
                8 \[Beta] + \[Delta] + 2 \[Lambda]))] + 
            UnitStep[
             c/\[Delta] - (
              2 (c - d) \[Beta])/((-2 + \[Delta] + 2 \[Lambda]) (-2 + 
                 8 \[Beta] + \[Delta] + 2 \[Lambda]))] + 
            UnitStep[-(-2 + \[Delta]^2/(2 - 2 \[Lambda]) + 
                2 \[Lambda])] + 
            UnitStep[-(1/
                8 (-2 - 8 \[Beta] + \[Delta] + 2 \[Lambda]))] + 
            UnitStep[-(((c - d)^2 \[Beta])/(
               2 (-2 + \[Delta] + 2 \[Lambda]) (-2 + 
                  8 \[Beta] + \[Delta] + 
                  2 \[Lambda]))) - (-(((c - d)^2 (-2 + 
                   2 \[Beta] + \[Delta] + 2 \[Lambda]))/(
                4 (-2 + \[Delta] + 2 \[Lambda])^2)))]) - 1/10000]} // 
      PiecewiseExpand[#, 0 < \[Delta] < 1/2 && 0 < \[Beta] < 1/2, 
        Method -> {"ConditionSimplifier" -> (Reduce[#, \[Delta]] &)}] & //
       FullSimplify[#, 0 < \[Delta] < 1/2 && 0 < \[Beta] < 1/2] & // 
    Evaluate, {\[Delta], 0, .5}, {\[Beta], 0, .5}, 
  AxesLabel -> {"\[Delta]", "\[Beta]"}, 
  PlotPoints -> 30,(*MaxRecursion->5,*)
  PlotRange -> {{0, .5}, {0, .5}, {z$lower, z$upper}}, 
  PlotStyle -> Cyan, ExclusionsStyle -> None]
POSTED BY: Michael Rogers

After some investigation starting with FunctionDiscontinuities, it seems that this options also does the job:

Exclusions -> {{-1 + 4 \[Beta] + \[Delta] == 0, \[Delta] < 2/
    5}, {\[Delta] == 2/5, \[Beta] < 3/20}}
POSTED BY: Gianluca Gorni
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard