Hello. My goal is to multiply very long mathematical expressions using Wolfram Mathematica. I used the command 'Expand' for that as follows
Expand[((
E^(-(1/2) t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + \[Kappa]]) u Sqrt[
x])/(4 \[Theta]) - (
E^(-(1/2) t Sqrt[\[Kappa]] Sqrt[8 \[Theta] + \[Kappa]]) u Sqrt[x]
Sqrt[8 \[Theta] + \[Kappa]])/(4 \[Theta] Sqrt[\[Kappa]])), (u/
4 - 1/8 E^(-t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u -
1/8 E^(t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u + (
E^(-t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u x^(3/2))/(
4 \[Theta]) + (
E^(t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u x^(3/2))/(
4 \[Theta]) + (
E^(-t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])
u Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])/(
8 (8 \[Theta] + \[Kappa])) - (
E^(t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])
u Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])/(
8 (8 \[Theta] + \[Kappa])) - (
E^(-t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u x^(3/2)
Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])/(
4 \[Theta] (8 \[Theta] + \[Kappa])) + (
E^(t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u x^(3/2)
Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])/(
4 \[Theta] (8 \[Theta] + \[Kappa])) - (
2 E^(-t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u x^(3/2)
Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])/(\[Kappa] (8 \[Theta] + \
\[Kappa])) + (
2 E^(t Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])]) u x^(3/2)
Sqrt[\[Kappa] (8 \[Theta] + \[Kappa])])/(\[Kappa] (8 \[Theta] + \
\[Kappa])) )]
Is that correct? Or is there another correct method of multiplying very long mathematical expressions?