NDSolve
supports matrix-valued dependent variables. So after removing the extra semicolon in the definition of H[t]
we can do:
(*Commutator function*)
Comm[A_, B_] := A . B - B . A;
(*Define the master equation:dρ/dt=-i[H,ρ]-Γ/2[H,[H,ρ]]*)
eq := -I Comm[H[t], ρ[t]] - (Γ/2) Comm[H[t],
Comm[H[t], ρ[t]]] == ρ'[t]
(*Initial conditions from ρ(0)*)
initConds = ρ[0] == ρinitial;
Tmax = 10;
ρsol = NDSolveValue[{eq, initConds}, ρ, {t, 0, Tmax}]