Here is an more involved example demonstrating that the parallel tangents can be found using numeric equation solving function:
f[x_, y_] := x^2 + x*Sin[4*y] + 3 y^2 - 7 + Cos[3*x];
pt = With[{x = RandomReal[{-2, 2}]}, {x, y /. FindRoot[f[x, y] == 0, {y, 1}]}];
slope = ImplicitD[f[x, y] == 0, y, x];
m = slope /. Thread[{x, y} -> pt];
pt2 = {x, y} /. FindRoot[{f[x, y] == 0, slope == m}, {x, -2}, {y, -1}];
m2 = slope /. Thread[{x, y} -> pt2];
ContourPlot[f[x,y]==0,{x,-4,4},{y,-4,4},Epilog->{InfiniteLine[pt,{1,m}],
InfiniteLine[pt2,{1,m2}],
{PointSize[0.02],Point[pt]},
{PointSize[0.02],Point[pt2]}
}]
