Group Abstract Group Abstract

Message Boards Message Boards

0
|
239 Views
|
1 Reply
|
3 Total Likes
View groups...
Share
Share this post:

How to compare sizes/orders using a logarithmic equality?

Posted 13 days ago

enter image description here

Reduce[Exists[{x, y, z}, {x > 0, y > 0, z > 0, 
     2 + Log[2, x] == 3 + Log[3, y] == 5 + Log[5, z], #}], 
   Reals] & /@ {x > y > z, x > z > y, y > x > z, y > z > x}

Since the solutions to logarithmic equations are not unique, it's impossible to determine a single exact solution for the equation. The method mentioned above cannot verify the correctness of the third option (Option C). Are there alternative approaches that can perfectly resolve this issue?

enter image description here

POSTED BY: Wen Dao

Using FindInstance we see that all four relationships have exceptions. For condition A:

eqs = {x > 0, y > 0, z > 0, 
   2 + Log[2, x] == 3 + Log[3, y] == 5 + Log[5, z]};
{condsA, condsB, condsC, condsD} = {x > y > z, x > z > y, y > x > z, 
   y > z > x};
FindInstance[Append[eqs, Not[condsA]], {x, y, z}]
Append[eqs, Not[condsA]] /. % // FullSimplify

For condition B:

FindInstance[Append[eqs, Not[condsB]], {x, y, z}]
Append[eqs, Not[condsB]] /. % // FullSimplify

For condition C:

FindInstance[Append[eqs, Not[condsC]], {x, y, z}]
Append[eqs, Not[condsC]] /. % // FullSimplify

For condition D:

FindInstance[Append[eqs, Not[condsD]], {x, y, z}]
Append[eqs, Not[condsD]] /. % // FullSimplify
POSTED BY: Gianluca Gorni
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard