Observe
In[15]:= InverseLaplaceTransform[LaplaceTransform[HeavisideTheta[s], s, t], t, s]
Out[15]= 1
despite the statement in the reference: LaplaceTransform and InverseLaplaceTransform are mutual inverse
In[16]:= InverseLaplaceTransform[LaplaceTransform[y[s], s, t], t, s]
Out[16]= y[s]
Does this entitle anybody to consider
In[4]:= InverseLaplaceTransform[1, s, t]
Out[4]= DiracDelta[t]
DiracDelta as InverseLaplaceTransform of HeavisideTheta?
Rather not, DiracDelta is the InverseLaplaceTransform of 1, but not of HeavisideTheta. If Mathematica tells the truth, an InverseLaplaceTransform of HeavisideTheta does not exist, at least I did not find one in the books.
What do you thing the result of
In[1]:= InverseLaplaceTransform[HeavisideTheta[s], s, t]
Out[1]= InverseLaplaceTransform[HeavisideTheta[s], s, t]
should be?