Given a mathematical expression EQ. I want to obtain either f[x,t] , Xi[1][x,t] or Xi[2][t] using the command DSolve. See below my attempts, Input: EQ=r Xi[1][x, t] + r x Derivative[1][Xi[2]][t] - \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] + x^2 \[Sigma]^2 \!\(\*SuperscriptBox[\(f\), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] - r x \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] - 1/2 x^2 \[Sigma]^2 \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] Input: DSolve[EQ] == 0, f[x, t], {x, t}]
First attempt output: {{f[x, t] -> C[1][t] + Inactive[Integrate][(-2 r Xi[1][K[1], t] - 2 r K[1] Derivative[1][Xi[2]][t] + 2 \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None]\)[K[1], t] + 2 r K[1] \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[K[1], t] + \[Sigma]^2 K[1]^2 \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[K[1], t])/( 2 \[Sigma]^2 K[1]^2), {K[1], 1, x}]}}
Second attempt input: DSolve[EDsI[[5]] == 0, Xi[1][x, t], {x, t}]
Second attempt output: DSolve[r Xi[1][x, t] + r x Derivative[1][Xi[2]][t] - \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] + x^2 \[Sigma]^2 \!\(\*SuperscriptBox[\(f\), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] - r x \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] - 1/2 x^2 \[Sigma]^2 \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, t] == 0, Xi[1][x, t], {x, t}]
Third attempt input: DSolve[EDsI[[5]] == 0, Xi[2][t], {t}] Third attempt output: {{Xi[2][t] -> C[1] + Inactive[Integrate][(-2 r Xi[1][x, K[1]] + 2 \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"0", ",", "1"}], ")"}], Derivative], MultilineFunction->None]\)[x, K[1]] - 2 x^2 \[Sigma]^2 \!\(\*SuperscriptBox[\(f\), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, K[1]] + 2 r x \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"1", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, K[1]] + x^2 \[Sigma]^2 \!\(\*SuperscriptBox[\(Xi[1]\), TagBox[ RowBox[{"(", RowBox[{"2", ",", "0"}], ")"}], Derivative], MultilineFunction->None]\)[x, K[1]])/(2 r x), {K[1], 1, t}]}} Please advise further on what to do if there is no more obtain the correct solution using DSolve fro the expression.