Hello, Wolfram,
Simply speaking, the purpose of this small programming is to get the Real values of An and Ak. I think that this is a very simple equation to solve, but I have no idea why NSolve does not give any Real solution (even Imaginary solution). Could you help me ? I pasted the context of the programming below.
Thank you in advance,
n = 2.48; k = 4.38; (* dn/d\[Eta], dk/d\[Eta] *) \[Epsilon] = (n +
I k)^2; \[Eta] = -5 10^-3;
d\[Epsilon][An_, Ak_] := 2 (n + I k) (An + I Ak) \[Eta];
rp[\[Theta]_] := (\[Epsilon] Cos[\[Theta]] - (\[Epsilon] -
Sin[\[Theta]]^2)^0.5)/(\[Epsilon] Cos[\[Theta]] + (\[Epsilon] -
Sin[\[Theta]]^2)^0.5);
drp[\[Theta]_, An_,
Ak_] := ((d\[Epsilon][An, Ak] Cos[\[Theta]] -
d\[Epsilon][An,
Ak]/(2 (\[Epsilon] -
Sin[\[Theta]]^2)^0.5)) (\[Epsilon] Cos[\[Theta]] + (\
\[Epsilon] -
Sin[\[Theta]]^2)^0.5) - (\[Epsilon] Cos[\[Theta]] - (\
\[Epsilon] - Sin[\[Theta]]^2)^0.5) (d\[Epsilon][An,
Ak] Cos[\[Theta]] +
d\[Epsilon][An,
Ak]/(2 (\[Epsilon] -
Sin[\[Theta]]^2)^0.5)))/(\[Epsilon] Cos[\[Theta]] + (\
\[Epsilon] - Sin[\[Theta]]^2)^0.5)^2;
NSolve[{2 Re[drp[10.0 \[Pi]/180, An, Ak]/rp[10.0 \[Pi]/180]] ==
0.001509,
2 Re[drp[60.0 \[Pi]/180, An, Ak]/rp[60.0 \[Pi]/180]] ==
0.00287}, {An, Ak}]
Attachments: