Message Boards Message Boards

0
|
5514 Views
|
3 Replies
|
0 Total Likes
View groups...
Share
Share this post:

Writing/simplify a procedure, formula, ...

Posted 10 years ago

Hello,

i have the problem to simplify a formula to calculate the correlation of a portfolio and another share. I can calculate it step by step, but if has to be possible, to write an universal formula. Even if anybody could only name the necessary command, it would be easier to find a clue for the solution.

I calculate the correlation with the formula

p=[(correlation 1xn-vector) x (VaR nx1 vector transpose)]/square root[(VaR 1xn-vector) x (R nxn correlation-matrix) x (VaR nx1-vector transpose)]

R is the correlation-matrix of 10 shares

R={{1, 0.2808, 0.3211, 0.1329, 0.2887, 0.4646, 0.3683, 0.2544, 0.1663, 
  0.2745}, {0.2808, 1, 0.3632, 0.3754, 0.3197, 0.5202, 0.4083, 0.2652,
   0.2225, 0.285}, {0.3211, 0.3632, 1, 0.3045, 0.4577, 0.5539, 0.4062,
   0.4089, 0.3118, 0.4914}, {0.1329, 0.3754, 0.3045, 1, 0.2911, 
  0.3297, 0.2492, 0.3412, 0.1141, 0.3737}, {0.2887, 0.3197, 0.4577, 
  0.2911, 1, 0.5293, 0.4529, 0.5554, 0.4132, 0.643}, {0.4646, 0.5202, 
  0.5539, 0.3297, 0.5239, 1, 0.5918, 0.4585, 0.3148, 0.4844}, {0.3683,
   0.4083, 0.4062, 0.2492, 0.4529, 0.5918, 1, 0.3787, 0.4705, 
  0.3896}, {0.2544, 0.2652, 0.4089, 0.3412, 0.5554, 0.4585, 0.3787, 1,
   0.3297, 0.6272}, {0.1663, 0.2225, 0.3118, 0.1141, 0.4132, 0.3148, 
  0.4705, 0.3297, 1, 0.3033}, {0.2745, 0.285, 0.4914, 0.3737, 0.643, 
  0.4844, 0.3896, 0.6272, 0.3033, 1}}

VaR ist the Value at risk vector of the 10 shares
VaR={{1, 2, 3, 4, 5, -1, -2, -3, -4, -5}}

korrelation12zu3 = ({{R[[1, 3]], 
      R[[2, 3]]}}.{{VaR[[1, 1]]}, {VaR[[1, 
       2]]}})/\[Sqrt]({{VaR[[1, 1]], VaR[[1, 2]]}}.{{R[[1, 1]], 
       R[[1, 2]]}, {R[[2, 1]], 
       R[[2, 2]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}})

{{0.423316}}

korrelation123zu4 = ({{R[[1, 4]], R[[2, 4]], 
      R[[3, 4]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
       3]]}})/\[Sqrt]({{VaR[[1, 1]], VaR[[1, 2]], 
       VaR[[1, 3]]}}.{{R[[1, 1]], R[[1, 2]], R[[1, 3]]}, {R[[2, 1]], 
       R[[2, 2]], R[[2, 3]]}, {R[[3, 1]], R[[3, 2]], 
       R[[3, 3]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 3]]}})

{{0.388424}}

korrelation1234zu5 = ({{R[[1, 5]], R[[2, 5]], R[[3, 5]], 
      R[[4, 5]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 3]]}, {VaR[[
       1, 4]]}})/\[Sqrt]({{VaR[[1, 1]], VaR[[1, 2]], VaR[[1, 3]], 
       VaR[[1, 4]]}}.{{R[[1, 1]], R[[1, 2]], R[[1, 3]], 
       R[[1, 4]]}, {R[[2, 1]], R[[2, 2]], R[[2, 3]], 
       R[[2, 4]]}, {R[[3, 1]], R[[3, 2]], R[[3, 3]], 
       R[[3, 4]]}, {R[[4, 1]], R[[4, 2]], R[[4, 3]], 
       R[[4, 4]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
        3]]}, {VaR[[1, 4]]}})

{{0.481585}}

korrelation12345zu6 = ({{R[[1, 6]], R[[2, 6]], R[[3, 6]], R[[4, 6]], 
      R[[5, 6]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 3]]}, {VaR[[
       1, 4]]}, {VaR[[1, 5]]}})/\[Sqrt]({{VaR[[1, 1]], VaR[[1, 2]], 
       VaR[[1, 3]], VaR[[1, 4]], VaR[[1, 5]]}}.{{R[[1, 1]], R[[1, 2]],
        R[[1, 3]], R[[1, 4]], R[[1, 5]]}, {R[[2, 1]], R[[2, 2]], 
       R[[2, 3]], R[[2, 4]], R[[2, 5]]}, {R[[3, 1]], R[[3, 2]], 
       R[[3, 3]], R[[3, 4]], R[[3, 5]]}, {R[[4, 1]], R[[4, 2]], 
       R[[4, 3]], R[[4, 4]], R[[4, 5]]}, {R[[5, 1]], R[[5, 2]], 
       R[[5, 3]], R[[5, 4]], 
       R[[5, 5]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
        3]]}, {VaR[[1, 4]]}, {VaR[[1, 5]]}})

{{0.675596}}

korrelation12346zu7 = ({{R[[1, 7]], R[[2, 7]], R[[3, 7]], R[[4, 7]], 
      R[[5, 7]], 
      R[[6, 7]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 3]]}, {VaR[[
       1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}})/\[Sqrt]({{VaR[[1, 1]], 
       VaR[[1, 2]], VaR[[1, 3]], VaR[[1, 4]], VaR[[1, 5]], 
       VaR[[1, 6]]}}.{{R[[1, 1]], R[[1, 2]], R[[1, 3]], R[[1, 4]], 
       R[[1, 5]], R[[1, 6]]}, {R[[2, 1]], R[[2, 2]], R[[2, 3]], 
       R[[2, 4]], R[[2, 5]], R[[2, 6]]}, {R[[3, 1]], R[[3, 2]], 
       R[[3, 3]], R[[3, 4]], R[[3, 5]], R[[3, 6]]}, {R[[4, 1]], 
       R[[4, 2]], R[[4, 3]], R[[4, 4]], R[[4, 5]], 
       R[[4, 6]]}, {R[[5, 1]], R[[5, 2]], R[[5, 3]], R[[5, 4]], 
       R[[5, 5]], R[[5, 6]]}, {R[[6, 1]], R[[6, 2]], R[[6, 3]], 
       R[[6, 4]], R[[6, 5]], 
       R[[6, 6]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
        3]]}, {VaR[[1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}})

{{0.511916}}

korrelation123467zu8 = ({{R[[1, 8]], R[[2, 8]], R[[3, 8]], R[[4, 8]], 
      R[[5, 8]], R[[6, 8]], 
      R[[7, 8]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 3]]}, {VaR[[
       1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}, {VaR[[1, 
       7]]}})/\[Sqrt]({{VaR[[1, 1]], VaR[[1, 2]], VaR[[1, 3]], 
       VaR[[1, 4]], VaR[[1, 5]], VaR[[1, 6]], 
       VaR[[1, 7]]}}.{{R[[1, 1]], R[[1, 2]], R[[1, 3]], R[[1, 4]], 
       R[[1, 5]], R[[1, 6]], R[[1, 7]]}, {R[[2, 1]], R[[2, 2]], 
       R[[2, 3]], R[[2, 4]], R[[2, 5]], R[[2, 6]], 
       R[[2, 7]]}, {R[[3, 1]], R[[3, 2]], R[[3, 3]], R[[3, 4]], 
       R[[3, 5]], R[[3, 6]], R[[3, 7]]}, {R[[4, 1]], R[[4, 2]], 
       R[[4, 3]], R[[4, 4]], R[[4, 5]], R[[4, 6]], 
       R[[4, 7]]}, {R[[5, 1]], R[[5, 2]], R[[5, 3]], R[[5, 4]], 
       R[[5, 5]], R[[5, 6]], R[[5, 7]]}, {R[[6, 1]], R[[6, 2]], 
       R[[6, 3]], R[[6, 4]], R[[6, 5]], R[[6, 6]], 
       R[[6, 7]]}, {R[[7, 1]], R[[7, 2]], R[[7, 3]], R[[7, 4]], 
       R[[7, 5]], R[[7, 6]], 
       R[[7, 7]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
        3]]}, {VaR[[1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}, {VaR[[1, 
        7]]}})

{{0.545535}}

korrelation1234678zu9 = ({{R[[1, 9]], R[[2, 9]], R[[3, 9]], R[[4, 9]],
       R[[5, 9]], R[[6, 9]], R[[7, 9]], 
      R[[8, 9]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 3]]}, {VaR[[
       1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}, {VaR[[1, 7]]}, {VaR[[1, 
       8]]}})/\[Sqrt]({{VaR[[1, 1]], VaR[[1, 2]], VaR[[1, 3]], 
       VaR[[1, 4]], VaR[[1, 5]], VaR[[1, 6]], VaR[[1, 7]], 
       VaR[[1, 8]]}}.{{R[[1, 1]], R[[1, 2]], R[[1, 3]], R[[1, 4]], 
       R[[1, 5]], R[[1, 6]], R[[1, 7]], R[[1, 8]]}, {R[[2, 1]], 
       R[[2, 2]], R[[2, 3]], R[[2, 4]], R[[2, 5]], R[[2, 6]], 
       R[[2, 7]], R[[2, 8]]}, {R[[3, 1]], R[[3, 2]], R[[3, 3]], 
       R[[3, 4]], R[[3, 5]], R[[3, 6]], R[[3, 7]], 
       R[[3, 8]]}, {R[[4, 1]], R[[4, 2]], R[[4, 3]], R[[4, 4]], 
       R[[4, 5]], R[[4, 6]], R[[4, 7]], R[[4, 8]]}, {R[[5, 1]], 
       R[[5, 2]], R[[5, 3]], R[[5, 4]], R[[5, 5]], R[[5, 6]], 
       R[[5, 7]], R[[5, 8]]}, {R[[6, 1]], R[[6, 2]], R[[6, 3]], 
       R[[6, 4]], R[[6, 5]], R[[6, 6]], R[[6, 7]], 
       R[[6, 8]]}, {R[[7, 1]], R[[7, 2]], R[[7, 3]], R[[7, 4]], 
       R[[7, 5]], R[[7, 6]], R[[7, 7]], R[[7, 8]]}, {R[[8, 1]], 
       R[[8, 2]], R[[8, 3]], R[[8, 4]], R[[8, 5]], R[[8, 6]], 
       R[[8, 7]], 
       R[[8, 8]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
        3]]}, {VaR[[1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}, {VaR[[1, 
        7]]}, {VaR[[1, 8]]}})

{{0.233015}}

korrelation12346789zu10 = ({{R[[1, 10]], R[[2, 10]], R[[3, 10]], 
      R[[4, 10]], R[[5, 10]], R[[6, 10]], R[[7, 10]], R[[8, 10]], 
      R[[9, 10]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
       3]]}, {VaR[[1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}, {VaR[[1, 
       7]]}, {VaR[[1, 8]]}, {VaR[[1, 9]]}})/\[Sqrt]({{VaR[[1, 1]], 
       VaR[[1, 2]], VaR[[1, 3]], VaR[[1, 4]], VaR[[1, 5]], 
       VaR[[1, 6]], VaR[[1, 7]], VaR[[1, 8]], 
       VaR[[1, 9]]}}.{{R[[1, 1]], R[[1, 2]], R[[1, 3]], R[[1, 4]], 
       R[[1, 5]], R[[1, 6]], R[[1, 7]], R[[1, 8]], 
       R[[1, 9]]}, {R[[2, 1]], R[[2, 2]], R[[2, 3]], R[[2, 4]], 
       R[[2, 5]], R[[2, 6]], R[[2, 7]], R[[2, 8]], 
       R[[2, 9]]}, {R[[3, 1]], R[[3, 2]], R[[3, 3]], R[[3, 4]], 
       R[[3, 5]], R[[3, 6]], R[[3, 7]], R[[3, 8]], 
       R[[3, 9]]}, {R[[4, 1]], R[[4, 2]], R[[4, 3]], R[[4, 4]], 
       R[[4, 5]], R[[4, 6]], R[[4, 7]], R[[4, 8]], 
       R[[4, 9]]}, {R[[5, 1]], R[[5, 2]], R[[5, 3]], R[[5, 4]], 
       R[[5, 5]], R[[5, 6]], R[[5, 7]], R[[5, 8]], 
       R[[5, 9]]}, {R[[6, 1]], R[[6, 2]], R[[6, 3]], R[[6, 4]], 
       R[[6, 5]], R[[6, 6]], R[[6, 7]], R[[6, 8]], 
       R[[6, 9]]}, {R[[7, 1]], R[[7, 2]], R[[7, 3]], R[[7, 4]], 
       R[[7, 5]], R[[7, 6]], R[[7, 7]], R[[7, 8]], 
       R[[7, 9]]}, {R[[8, 1]], R[[8, 2]], R[[8, 3]], R[[8, 4]], 
       R[[8, 5]], R[[8, 6]], R[[8, 7]], R[[8, 8]], 
       R[[8, 9]]}, {R[[9, 1]], R[[9, 2]], R[[9, 3]], R[[9, 4]], 
       R[[9, 5]], R[[9, 6]], R[[9, 7]], R[[9, 8]], 
       R[[9, 9]]}}.{{VaR[[1, 1]]}, {VaR[[1, 2]]}, {VaR[[1, 
        3]]}, {VaR[[1, 4]]}, {VaR[[1, 5]]}, {VaR[[1, 6]]}, {VaR[[1, 
        7]]}, {VaR[[1, 8]]}, {VaR[[1, 9]]}})

{{0.337219}}

i hope anybody have an advice for me. thx

Attachments:
POSTED BY: Kim Köckeritz
3 Replies
Posted 10 years ago

thank you very much! :)

POSTED BY: Kim Köckeritz
In[1]:= Clear[R]
        R = {{1, 0.2808, 0.3211, 0.1329, 0.2887, 0.4646, 0.3683, 0.2544, 0.1663, 0.2745}, 
             {0.2808, 1, 0.3632, 0.3754, 0.3197, 0.5202, 0.4083, 0.2652, 0.2225, 0.285}, 
             {0.3211, 0.3632, 1, 0.3045, 0.4577, 0.5539, 0.4062, 0.4089, 0.3118, 0.4914}, 
             {0.1329, 0.3754, 0.3045, 1, 0.2911, 0.3297, 0.2492, 0.3412, 0.1141, 0.3737}, 
             {0.2887, 0.3197, 0.4577, 0.2911, 1, 0.5293, 0.4529, 0.5554, 0.4132, 0.643}, 
             {0.4646, 0.5202, 0.5539, 0.3297, 0.5239, 1, 0.5918, 0.4585, 0.3148, 0.4844}, 
             {0.3683, 0.4083, 0.4062, 0.2492, 0.4529, 0.5918, 1, 0.3787, 0.4705, 0.3896}, 
             {0.2544, 0.2652, 0.4089, 0.3412, 0.5554, 0.4585, 0.3787, 1, 0.3297, 0.6272}, 
             {0.1663, 0.2225, 0.3118, 0.1141, 0.4132, 0.3148, 0.4705, 0.3297, 1, 0.3033}, 
             {0.2745, 0.285, 0.4914, 0.3737, 0.643, 0.4844, 0.3896, 0.6272, 0.3033, 1}};

        (* VaR ist the Value at risk vector of the 10 shares. There is an extra list level in the original. *)
        VaR = {1, 2, 3, 4, 5, -1, -2, -3, -4, -5};

        (* Why R is not symmetric? A digit rotation happened. *)
        In[18]:= Position[R - Transpose[R], #] & /@ Flatten[Select[#, # != 0 &] & /@ (R - Transpose[R])]
        Out[18]= {{{5, 6}}, {{6, 5}}}

now it's utterly easy, translate your formula into a module

In[51]:= Clear[koeckeritzKorrelator]
koeckeritzKorrelator[m_?MatrixQ, v_?VectorQ, d_Integer] := 
 Module[{m0 = m[[1 ;; (d - 1), 1 ;; (d - 1)]], v0 = Take[v, d - 1], r0 = m[[1 ;; (d - 1), d]]},
   (r0.v0)/Sqrt[v0.m0.v0]
 ] /; 2 < d <= Length[v] && Length[m] == Length[v]

and test it

In[53]:= koeckeritzKorrelator[R, VaR, #] & /@ Range[3, 10]
Out[53]= {0.423316, 0.388424, 0.481585, 0.675596, 0.511916, 0.545535, 0.233015, 0.337219}
POSTED BY: Udo Krause

This formula seems to exist, a first shot for it is your natural language input

p=[(correlation 1xn-vector) x (VaR nx1 vector transpose)]/square root[(VaR 1xn-vector) x (R nxn correlation-matrix) x (VaR nx1-vector transpose)]

the numerator is a scalar product (R . VaR), the denominator seems to be the square root of (VaR . R . VaR) only you have to select the elements which have to enter that ... in accordance with your tedious handwriting!

POSTED BY: Udo Krause
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract