# How can I export this graphic into maya or 3ds?

Posted 5 years ago
7382 Views
|
7 Replies
|
7 Total Likes
|
7 Replies
Sort By:
Posted 4 years ago
 Dear Aysu,Welcome to Wolfram Community, we are glad to have you!Please do not post several question on the same discussion.If you have a new question, then make a new post.The 2nd question you asked on this discussion thread was posted separately here:Is it possible to write the code and manipulate it in grasshopper?Please keep you comments here in accordance with original subject and use other posts for other subjects.Sincerely,Moderation TeamP.S. We recommend reading this post for the beginners: How to post and use Wolfram Community
Posted 5 years ago
 It is my pleasure to show the "interesting architectural form" if I manage to do it :)
Posted 5 years ago
 Glad to help. If you turn that surface into something architecturally interesting, I'd love to see it. Chris
Posted 5 years ago
 Thankyou :) It worked
Posted 5 years ago
 Use Paste Snapshot from the pop-up menu at the upper right.Edit the resulting expression, changing DynamicModule to Module, and assign to "graphics": graphics = Module[... Export the graphics: Export["Structure.3ds", graphics] Chris
 Here is the code: Manipulate[ Module[{\[CurlyEpsilon] = 10^-6, c1 = Tan[a1], c2 = Tan[a2], c3 = Tan[a3], c4 = Tan[a4], c5 = Tan[a5], c6 = Tan[a6]}, ContourPlot3D[ Evaluate[ c6 Sin[3 x] Sin[2 y] Sin[z] + c4 Sin[2 x] Sin[3 y] Sin[z] + c5 Sin[3 x] Sin[y] Sin[2 z] + c2 Sin[x] Sin[3 y] Sin[2 z] + c3 Sin[2 x] Sin[y] Sin[3 z] + c1 Sin[x] Sin[2 y] Sin[3 z] == 0], {x, \[CurlyEpsilon], Pi - \[CurlyEpsilon]}, {y, \[CurlyEpsilon], Pi - \[CurlyEpsilon]}, {z, \[CurlyEpsilon], Pi - \[CurlyEpsilon]}, Mesh -> False, ImageSize -> {400, 400}, Boxed -> False, Axes -> False, NormalsFunction -> "Average", PlotPoints -> ControlActive[10, 30], PerformanceGoal -> "Speed"]], {{a1, 1, "\!$$\*SubscriptBox[\(\[Alpha]$$, $$1$$]\)"}, -Pi/2 - 0.01, Pi/2 + 0.01, ImageSize -> Tiny}, {{a2, 1, "\!$$\*SubscriptBox[\(\[Alpha]$$, $$2$$]\)"}, -Pi/2 - 0.01, Pi/2 + 0.01, ImageSize -> Tiny}, {{a3, 1, "\!$$\*SubscriptBox[\(\[Alpha]$$, $$3$$]\)"}, -Pi/2 - 0.01, Pi/2 + 0.01, ImageSize -> Tiny}, {{a4, 1, "\!$$\*SubscriptBox[\(\[Alpha]$$, $$4$$]\)"}, -Pi/2 - 0.01, Pi/2 + 0.01, ImageSize -> Tiny}, {{a5, 1, "\!$$\*SubscriptBox[\(\[Alpha]$$, $$5$$]\)"}, -Pi/2 - 0.01, Pi/2 + 0.01, ImageSize -> Tiny}, {{a6, 1, "\!$$\*SubscriptBox[\(\[Alpha]$$, $$6$$]\)"}, -Pi/2 - 0.01, Pi/2 + 0.01, ImageSize -> Tiny}, AutorunSequencing -> {1, 3, 5}, ControlPlacement -> Left] 
 This makes a simple parametric surface: surface = ParametricPlot3D[{Cos[u], Sin[u], v}, {u, 0, 2 \[Pi]}, {v, 0, 1}] This exports it in Maya format: Export["cylinder", surface, "Maya"] And this exports it in 3DS format: Export["cylinder.3ds", surface, "3DS"] I can't say why the example you gave didn't export. If you post the expression that created the surface, I can take a look.Chris