# How to solve analytically Wave Equation?

Posted 9 years ago
5515 Views
|
2 Replies
|
0 Total Likes
|
 Hi everybody, I'm trying to solve analytically the wave equation in 1-D,2-D,3-D(I have already a numeric solution). I tried to solve it with the separation of variables mathod, but I can't get an acceptable solution. Could you help me please? Thank you in advance. Here's my code: In[50]:= Clear["Global`*"] In[51]:= c = 3; a = -4; In[53]:= eq = (1/c^2)*D[U[x, t], {t, 2}] == D[U[x, t], {x, 2}]; eq = (1/c^2)*T''[t] X[x] == X''[x] T[t]; eq = T''[t]/T[t] == c^2 * X''[x]/X[x]; eq1 = T''[t]/T[t] == a; eq2 = c^2*X''[x]/X[x] == a; boundaryconditions = {U[x, 0] == Exp[-x^2], U[-10, t] == 0, U[10, t] == 0, Derivative[0, 1][U][x, 0] == 0}; boundaryconditions = {X[x] T[0] == Exp[-x^2], X[-10] T[t] == 0, X[10] T[t] == 0, X[x] T'[0] == 0}; In[119]:= L = 20; fi = Exp[-x^2] psi = 0; omegan = n*Pi*c/L; Out[120]= E^-x^2 In[123]:= An = (2/L)*Integrate[fi*Sin[n*Pi*x/L], {x, 0, L}] Out[123]= 1/40 E^(-((n^2 \[Pi]^2)/ 1600)) Sqrt[\[Pi]] (-I Erf[20 - (I n \[Pi])/40] + I Erf[20 + (I n \[Pi])/40] + 2 Erfi[(n \[Pi])/40]) In[124]:= Bn = (1/omegan)*(2/L)*Integrate[psi*Sin[n*Pi*x/L], {x, 0, L}] Out[124]= 0 In[125]:= U[x, t] = Sum[(An*Cos[omegan*t] + Bn*Sin[omegan*t])*Sin[n*Pi*x/L], {n, 1, 1000 L}]; In[126]:= Table[ Plot[Evaluate[U[x, t]], {x, -10, 10}, PlotRange -> {{-10, 10}, {0, 1}}], {t, 0, 1, .1}]
2 Replies
Sort By:
Posted 9 years ago
 If you change your definition for U to take patterns: Clear[U]; U[x_, t_] = Sum[(An*Cos[omegan*t] + Bn*Sin[omegan*t])*Sin[n*Pi*x/L], {n, 1, 10 L}] Then Table[Plot[Evaluate[U[x, t]], {x, -10, 10}, PlotRange -> {{-10, 10}, {0, 1}}], {t, 0, 1, .1}] works.I truncated the fourier series at many fewer terms than your example. You may get improvement if you use the builtin fourier series functions. You may want to use a Manipulate instead of Table. Also, if your sum is numerical, you should get better performance with NSum rather than Sum.
Posted 9 years ago
 Note that the wave equation also has the non separable solutions f[x - c t] and f[x + c t].