Are you looking for something that shows the geometry of the transformation? If so, how about this:
points = {{-1, -1}, {1, -1}, {1, 1}, {-1, 1}, {0, 0}, {0, 1}}
graphicsObjects = {Red, Polygon[{1, 2, 5}], Blue,
Polygon[{2, 3, 6, 5}] , Orange, Polygon[{6, 5, 1, 4}]}
g0 = Graphics[GraphicsComplex[points, graphicsObjects]]
MatrixForm[mirrorY = {{1, 0}, {0, -1}}]
mirrorY gets used in the rule-replace:
Graphics[GraphicsComplex[points /. {x_, y_} :> mirrorY.{x, y},
graphicsObjects]]
rotation45 = RotationMatrix[45 Degree]
Graphics[GraphicsComplex[points /. {x_, y_} :> rotation45.{x, y},
graphicsObjects]]
Rotate and then mirror:
Graphics[GraphicsComplex[
points /. {x_, y_} :> mirrorY. rotation45.{x, y}, graphicsObjects]]
mirror across a different line:
g1 = Graphics[
GraphicsComplex[points /. {x_, y_} :> mirrorY.{x, y - 1},
graphicsObjects]]
Show original and mirror together
Show[g1, g0]
steps: