1
|
5518 Views
|
|
1 Total Likes
View groups...
Share
GROUPS:

# Creating a single col matrix

Posted 10 years ago
 I'm looking for help to create an n*1 matrix having this condition v1,v2,v3 for i=1 to i=3, VRng for i=4 to i=n-4 v4,v5,v6 for i=n-3, to i=n mean MatrixForm[v1,v2,v3,...VRng...,v4,v5,v6] f[x_] = -x; g[x_] = -(11 + 9 x + x^2 - x^3) E^x; v1 = N[(-Subscript[a, 0] Subscript[A, 0] - Subscript[c, 1] h Subscript[A, 1] - h^4 (Subscript[v, 0] (g[0] - f[0] Subscript[A, 0]) + Subscript[v, 1] g[1] + Subscript[v, 2] g[2] + Subscript[v, 3] g[3] + Subscript[v, 4] g[4] + Subscript[v, 5] g[5]))]; v2 = N[(-Subscript[c, 2] h Subscript[A, 1] - h^4 (Subscript[w, 1] g[1] + Subscript[w, 2] g[2] + Subscript[w, 3] g[3] + Subscript[w, 4] g[4] + Subscript[w, 5] g[5] + Subscript[w, 6] g[6]))]; v3 = N[h^4 (\[Lambda] (g[0] - f[0] Subscript[A, 0]) + \[Mu] g[ 1] + \[Tau] g[2] + \[Nu] g[3] + \[Tau] g[4] + \[Mu] g[ 5] + \[Lambda] g[6]) - 6 \[Alpha] Subscript[A, 0]]; VRnge = N[ h^4 (\[Lambda] g[1] + \[Mu] g[2] + \[Tau] g[3] + \[Nu] g[ 4] + \[Tau] g[5] + \[Mu] g[6] + \[Lambda] g[7])]; v4 = N[h^4 (\[Lambda] g[2] + \[Mu] g[3] + \[Tau] g[4] + \[Nu] g[ 5] + \[Mu] g[6] + \[Lambda] g[7]) + h^4 \[Lambda] (g[8] - f[8] Subscript[B, 0])]; v5 = N[Subscript[c, 2] h Subscript[B, 1] - h^4 (Subscript[w, n] - 6 g[2] + Subscript[w, n - 5] g[7] + Subscript[w, n - 4] g[4] + Subscript[w, n - 3] g[5] + Subscript[w, n - 2] g[6] + Subscript[w, n - 1] g[7])]; v6 = N[-Subscript[a, n] Subscript[B, 0] + Subscript[c, 1] h Subscript[B, 1] - h^4 Subscript[v, n] (g[8] - f[8] Subscript[B, 0]) - h^4 (Subscript[v, n - 5] g[7] + Subscript[v, n - 4] g[4] + Subscript[v, n - 3] g[5] + Subscript[v, n - 2] g[6] + Subscript[v, n - 1] g[7])];  These are the values of V I have tried this, but I'm stuck, could anyone please help me out? Regards, Vvals = {v1, v2, v3, VRnge, v4, v5, v6}; MatrixForm[Vvals] VMat1 = {}; For[i = 1, i <= n, i++, VMat1 = Append[VMat1, Vvals]];  Attachments:
 $\mathit{Mathematica}$ makes no difference between column and row vectors, column and row matrices; they all are just lists. There are no column lists and no row lists in $\mathit{Mathematica}$. In[13]:= muzahooM[n_Integer] := {Join[{v1, v2, v3}, ConstantArray[vRng, n - 6], {v4, v5, v6}]} /; n > 5 In[14]:= muzahooM[6] Out[14]= {{v1, v2, v3, v4, v5, v6}} In[15]:= MatrixQ[muzahooM[6]] Out[15]= True In[16]:= TensorRank[muzahooM[6]] Out[16]= 2 In[17]:= Dimensions[muzahooM[6]] Out[17]= {1, 6} In[18]:= muzahooM[17] Out[18]= {{v1, v2, v3, vRng, vRng, vRng, vRng, vRng, vRng, vRng, vRng,vRng, vRng, vRng, v4, v5, v6}} In[19]:= MatrixQ[muzahooM[17]] Out[19]= True In[20]:= TensorRank[muzahooM[17]] Out[20]= 2 In[21]:= Dimensions[muzahooM[17]] Out[21]= {1, 17}