I'm looking for help to create an n*1 matrix having this condition v1,v2,v3 for i=1 to i=3, VRng for i=4 to i=n-4 v4,v5,v6 for i=n-3, to i=n
mean MatrixForm[v1,v2,v3,...VRng...,v4,v5,v6]
f[x_] = -x;
g[x_] = -(11 + 9 x + x^2 - x^3) E^x;
v1 = N[(-Subscript[a, 0] Subscript[A, 0] -
Subscript[c, 1] h Subscript[A, 1] -
h^4 (Subscript[v, 0] (g[0] - f[0] Subscript[A, 0]) +
Subscript[v, 1] g[1] + Subscript[v, 2] g[2] +
Subscript[v, 3] g[3] + Subscript[v, 4] g[4] +
Subscript[v, 5] g[5]))];
v2 = N[(-Subscript[c, 2] h Subscript[A, 1] -
h^4 (Subscript[w, 1] g[1] + Subscript[w, 2] g[2] +
Subscript[w, 3] g[3] + Subscript[w, 4] g[4] +
Subscript[w, 5] g[5] + Subscript[w, 6] g[6]))];
v3 = N[h^4 (\[Lambda] (g[0] - f[0] Subscript[A, 0]) + \[Mu] g[
1] + \[Tau] g[2] + \[Nu] g[3] + \[Tau] g[4] + \[Mu] g[
5] + \[Lambda] g[6]) - 6 \[Alpha] Subscript[A, 0]];
VRnge = N[
h^4 (\[Lambda] g[1] + \[Mu] g[2] + \[Tau] g[3] + \[Nu] g[
4] + \[Tau] g[5] + \[Mu] g[6] + \[Lambda] g[7])];
v4 = N[h^4 (\[Lambda] g[2] + \[Mu] g[3] + \[Tau] g[4] + \[Nu] g[
5] + \[Mu] g[6] + \[Lambda] g[7]) +
h^4 \[Lambda] (g[8] - f[8] Subscript[B, 0])];
v5 = N[Subscript[c, 2] h Subscript[B, 1] -
h^4 (Subscript[w, n] - 6 g[2] + Subscript[w, n - 5] g[7] +
Subscript[w, n - 4] g[4] + Subscript[w, n - 3] g[5] +
Subscript[w, n - 2] g[6] + Subscript[w, n - 1] g[7])];
v6 = N[-Subscript[a, n] Subscript[B, 0] +
Subscript[c, 1] h Subscript[B, 1] -
h^4 Subscript[v, n] (g[8] - f[8] Subscript[B, 0]) -
h^4 (Subscript[v, n - 5] g[7] + Subscript[v, n - 4] g[4] +
Subscript[v, n - 3] g[5] + Subscript[v, n - 2] g[6] +
Subscript[v, n - 1] g[7])];
These are the values of V
I have tried this, but I'm stuck, could anyone please help me out?
Regards,
Vvals = {v1, v2, v3, VRnge, v4, v5, v6};
MatrixForm[Vvals]
VMat1 = {};
For[i = 1, i <= n, i++, VMat1 = Append[VMat1, Vvals]];
Attachments: