Group Abstract Group Abstract

Message Boards Message Boards

0
|
8.2K Views
|
2 Replies
|
0 Total Likes
View groups...
Share
Share this post:
GROUPS:

Simple Word Problem- Double check answer?

Posted 11 years ago
POSTED BY: K M
2 Replies
Posted 11 years ago

Alternatively we could do it this way, look at diagram

2 (11 * x) + 2 (25 * x) + 4 x^2 = 576

giving

4 x^2 + 72 x - 576 = 0

We could simplify it to

x^2 + 18 x - 144 = 0

Solve either by hand or

Solve[x^2 + 18 x - 144 == 0, x]
{{x -> -24}, {x -> 6}}

and clearly x can't be -24 so there you have the answer.

enter image description here

Paul.

POSTED BY: Paul Cleary

For a path of width w the total area (path plus enclosed area) is (25+2w)(11+2*w) and the enclosed area is (25)(11). The difference is given as 576.

eqn = (25 + 2 w)*(11 + 2 w) - (25*11) == 576;

soln = Solve[{eqn, w > 0}, w][[1]]

{w -> 6}

eqn /. soln

True

So the path is 6 ft wide.

POSTED BY: Robert Hanlon
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard