In the meanwhile you might have figured it out, but nevertheless
(* re-create the identity (A.37): The point is keeping the m invariant, i.e. using identities (A.35) and (A.36)
for D[LegendreP[l,m,Cos[\[CurlyTheta]]],\[CurlyTheta]] together with
(A.20) and (A.21) for Sin[\[CurlyTheta]] D[LegendreP[l,m,Cos[\[CurlyTheta]]] to do that.
Did not work out, so use SphericalHarmonicY as an index function as before. *)
Off[SphericalHarmonicY::argrx]
Clear[kp, km, \[Xi], singleQ, \[Zeta]]
km[l_, m_] := Sqrt[(l + m) (l - m)/((2 l + 1) (2 l - 1))]
kp[l_, m_] := km[l + 1, m]
singleQ[G_, f_] := Length[Select[Level[f, {1}], Head[#] == G &]] == 1 /; Head[f] === Times
singleQ[G_, f_] := And @@ (singleQ[G, #] & /@ (List @@ f)) /; Head[f] === Plus
singleQ[G_, f_] := False /; Head[f] =!= Times && Head[f] =!= Plus
\[Zeta][G_, y_, f_] := ((D[f, y] /. {G[l_, m_, x__] -> kp[l, m] G[l + 1, m, x] + km[l, m] G[l - 1, m, x]}) +
(f /. {G[l_, m_, x__] -> -(l/r) kp[l, m] G[l + 1, m, x] + (l + 1)/r km[l, m] G[l - 1, m, x]})) /; ! FreeQ[f, G]
&& FreeQ[Denominator[Together[f]], G] && singleQ[G, Expand[f]] && FreeQ[D[f, y], Derivative[__][G]]
\[Zeta][SphericalHarmonicY, r,
f[r] SphericalHarmonicY[\[Lambda], \[Mu], \[Alpha], \[Beta]]] // TraditionalForm
Simplify[\[Zeta][SphericalHarmonicY,
r, \[Zeta][SphericalHarmonicY, r,
f[r] SphericalHarmonicY[\[Lambda], \[Mu], \[Alpha], \[Beta]]]]] // TraditionalForm
Simplify[\[Zeta][SphericalHarmonicY,
r, \[Zeta][SphericalHarmonicY,
r, \[Zeta][SphericalHarmonicY, r,
f[r] SphericalHarmonicY[\[Lambda], \[Mu], \[Alpha], \[Beta]]]]]] // TraditionalForm
this last one gives
